FC5A seres micro5mart. -pentra

User's Manual Advanced Volume

! ! WindLDR

Safety Precautions

- Read this user's manual to make sure of correct operation before starting installation, wiring, operation, maintenance, and inspection of the MicroSmart.
- All MicroSmart modules are manufactured under IDEC's rigorous quality control system, but users must add a backup or failsafe provision to the control system when using the MicroSmart in applications where heavy damage or personal injury may be caused in case the MicroSmart should fail.
- In this user's manual, safety precautions are categorized in order of importance to Warning and Caution:

Warning notices are used to emphasize that improper operation may cause severe personal injury or death.

- Turn off power to the MicroSmart before installation, removal, wiring, maintenance, and inspection of the MicroSmart. Failure to turn power off may cause electrical shocks or fire hazard.
- Special expertise is required to install, wire, program, and operate the MicroSmart. People without such expertise must not use the MicroSmart.
- Emergency stop and interlocking circuits must be configured outside the MicroSmart. If such a circuit is configured inside the MicroSmart, failure of the MicroSmart may cause disorder of the control system, damage, or accidents.
- Install the MicroSmart according to the instructions described in this user's manual. Improper installation will result in falling, failure, or malfunction of the MicroSmart.

Caution notices are used where inattention might cause personal injury or damage to equipment.

- The MicroSmart is designed for installation in a cabinet. Do not install the MicroSmart outside a cabinet.
- Install the MicroSmart in environments described in this user's manual. If the MicroSmart is used in places where the MicroSmart is subjected to high-temperature, high-humidity, condensation, corrosive gases, excessive vibrations, and excessive shocks, then electrical shocks, fire hazard, or malfunction will result.
-The environment for using the MicroSmart is "Pollution degree 2." Use the MicroSmart in environments of pollution degree 2 (according to IEC 60664-1).
- Prevent the MicroSmart from falling while moving or transporting the MicroSmart, otherwise damage or malfunction of the MicroSmart will result.
- Prevent metal fragments and pieces of wire from dropping inside the MicroSmart housing. Put a cover on the MicroSmart modules during installation and wiring. Ingress of such fragments and chips may cause fire hazard, damage, or malfunction.
- Use a power supply of the rated value. Use of a wrong power supply may cause fire hazard.
- Use an IEC 60127-approved fuse on the power line outside the MicroSmart. This is required when equipment containing the MicroSmart is destined for Europe.
- Use an IEC 60127-approved fuse on the output circuit. This is required when equipment containing the MicroSmart is destined for Europe.
- Use an EU-approved circuit breaker. This is required when equipment containing the MicroSmart is destined for Europe.
- Make sure of safety before starting and stopping the MicroSmart or when operating the MicroSmart to force outputs on or off. Incorrect operation on the MicroSmart may cause machine damage or accidents.
- If relays or transistors in the MicroSmart output modules should fail, outputs may remain on or off. For output signals which may cause heavy accidents, provide a monitor circuit outside the MicroSmart.
- Do not connect the ground wire directly to the MicroSmart. Connect a protective ground to the cabinet containing the MicroSmart using an M4 or larger screw. This is required when equipment containing the MicroSmart is destined for Europe.
- Do not disassemble, repair, or modify the MicroSmart modules.
- Dispose of the battery in the MicroSmart modules when the battery is dead in accordance with pertaining regulations. When storing or disposing of the battery, use a proper container prepared for this purpose. This is required when equipment containing the MicroSmart is destined for Europe.
- When disposing of the MicroSmart, do so as an industrial waste.

Revision Record

The table below summarizes the changes to this manual since the first printing of FC9Y-B927-0 in April, 2006.
Upgraded and new functions listed below have been implemented in the FC5A MicroSmart CPU modules. The availability of these functions depends on the model and the system program version of the FC5A MicroSmart CPU modules.

To confirm the system program version of the MicroSmart CPU module, use WindLDR on a computer connected with the CPU module. The system program version is indicated on the PLC Status dialog box. See page 13-1 (Basic Vol.).
To confirm the WindLDR version, select the WindLDR application button at the upper-left corner of the WindLDR screen, followed by WindLDR Options > Resources. The WindLDR version is found under About WindLDR.

Upgraded and New Functions List

CPU Module	All-In-One Type		Slim Type	WindLD R	Page
	FC5A-C10R2 FC5A-C10R2C FC5A-C10R2D FC5A-C16R2 FC5A-C16R2C FC5A-C16R2D	FC5A-C24R2 FC5A-C24R2C FC5A-C24R2D	FC5A-D16RK1 FC5A-D16RS1 FC5A-D32K3 FC5A-D32S3 FC5A-D12K1E FC5A-D12S1E (Note 1)		
HMI Module Upgrade (Note 2)	110 or higher	110 or higher	101 or higher	-	Basic Vol. $5-60$
FC5A-SIF2 Expansion RS232C Communication Module Compatibility (Note 3)	-		110 or higher	5.1 or higher	$\begin{aligned} & \text { Basic Vol. } \\ & 2-86,25-1 \end{aligned}$
Modbus Master Upgrade (Note 4)		-			$\begin{gathered} \text { Basic Vol. } \\ 12-6 \end{gathered}$
Modbus Slave Upgrade (Note 4)	110 or higher	110 or higher			Basic Vol. $12-14$
32-bit Data Storage Setting				5.2 or higher	Basic Vol. $5-46$
Forced I/O	200 or higher	200 or higher	200 or higher		Basic Vol. $5-72$
RUN LED Flashing Mode					$\begin{gathered} \text { Basic Vol. } \\ 5-49 \end{gathered}$
Memory Cartridge Upload Function (Note 5)					Basic Vol. 2-93
Off-Delay Timer Instructions (TMLO, TIMO, TMHO, and TMSO)					$\begin{gathered} \text { Basic Vol. } \\ 7-11 \end{gathered}$
Double-Word Counter Instructions (CNTD, CDPD, and CUDD)					$\begin{gathered} \text { Basic Vol. } \\ 7-15 \end{gathered}$
MOV and IMOV Instructions Upgrade (New data type F)					3-1
N Data Set and N Data Repeat Set Instructions (NSET and NRS)					3-13, 3-14
Timer/Counter Current Value Store Instruction (TCCST)					3-16
CMP Instructions Upgrade					4-4
Load Comparison Instructions ($\mathrm{LC}=, \mathrm{LC}<>, \mathrm{LC}<, \mathrm{LC}>, \mathrm{LC}<=$, and $\mathrm{LC}>=$)					4-8
BTOA and ATOB Instructions Upgrade (New data type D)					$\begin{aligned} & \hline 8-9, \\ & 8-12 \end{aligned}$
Data Divide, Combine, and Swap Instructions (DTDV, DTCB, and SWAP)					$\begin{gathered} 8-21,8-22, \\ 8-23 \end{gathered}$
User Communication Instructions Upgrade (TXD and RXD)					$\begin{gathered} \hline \text { Basic Vol. } \\ 10-6,10-15 \end{gathered}$
File Data Processing Instructions (FIFOF, FIEX, and FOEX)					19-1, 19-3

CPU Module	All-In-One Type		Slim Type	$\begin{aligned} & \text { WindLD } \\ & \quad \mathrm{R} \end{aligned}$	Page
	$\begin{aligned} & \text { FC5A-C10R2 } \\ & \text { FC5A-C10R2C } \\ & \text { FC5A-C10R2D } \\ & \text { FC5A-C16R2 } \\ & \text { FC5A-C16R2C } \\ & \text { FC5A-C16R2D } \end{aligned}$	$\begin{aligned} & \text { FC5A-C24R2 } \\ & \text { FC5A-C24R2C } \\ & \text { FC5A-C24R2D } \end{aligned}$	FC5A-D16RK1 FC5A-D16RS1 FC5A-D32K3 FC5A-D32S3 FC5A-D12K1E FC5A-D12S1E (Note 1)		
Key Matrix Input (Note 6)	-	210 or higher	210 or higher	5.3 or higher	$\begin{gathered} \text { Basic Vol. } \\ 5-38 \end{gathered}$
User Program Protection Upgrade	210 or higher				$\begin{gathered} \text { Basic Vol. } \\ 5-44 \end{gathered}$
Exchange Instruction (XCHG)					3-15
Increment Instruction (INC)					5-13
Decrement Instruction (DEC)					5-13
Sum Instruction (SUM)					5-16
Random Instruction (RNDM)	210 or higher	210 or higher	210 or higher	5.3 or higher	5-19
Decrement Jump Non-zero (DJNZ)					11-5
N Data Search Instruction (NDSRC)					19-5
Clock Instructions (TADD, TSUB, HTOS, STOH, and HOUR)					20-1
All-in-one 12V DC Power CPU Modules	-	-	-		$\begin{gathered} \hline \text { Basic Vol. } \\ 2-1 \end{gathered}$
Analog I/O Modules Upgrade (Version 200 or higher)	-	Any	Any	Any	$\begin{gathered} \hline \text { Basic Vol. } \\ 2-56 \end{gathered}$
Modbus TCP Communication	210 or higher	210 or higher	210 or higher	5.3 or higher	23-1
Modbus Slave Communication for Port 1 (Note 4)					$\begin{gathered} \text { Basic Vol. } \\ 12-11 \end{gathered}$
Run/Stop Selection at Power Up	220 or higher	220 or higher	220 or higher	6.2 or higher	Basic Vol. 5-4
FC5A-SIF4 Expansion RS485 Communication Module Compatibility (Note 3)	-				Basic Vol. 2-86, 25-1
Data Link and Modbus Communication for Port 3 to Port 7 (Note 4)					Basic Vol. $11-1,12-1$
Communication Refresh Selection for Port 3 to Port 7					Basic Vol. $5-43$

Note 1: All functions are available on FC5A-D12K1E and FC5A-D12S1E with system program version 100.
Note 2: Optional HMI module (FC4A-PH1) is needed to use this function.
Note 3: Expansion RS232C and RS485 communication modules (FC5A-SIF2 and FC5A-SIF4) cannot be used with the FC5A-C24R2D CPU module.

Note 4: Modbus Master communication can be used on port 2 through port 7. Modbus Slave communication can be used on port 1 through port 7. Optional communication adapter (FC4A-PC1 or FC4A-PC3) or communication module (FC4A-HPC1 or FC4A-HPC3) is needed to use port 2. Expansion RS232C or RS485 communication modules (FC5A-SIF2 or FC5A-SIF4) are needed to use port 3 through port 7.

Note 5: Memory cartridge (FC4A-PM32, FC4A-PM64, or FC4A-PM128) is required to use this function.
Note 6: Key matrix inputs cannot be used on the FC5A-C24R2D CPU module.

Revision History

Date	Manual No.	Description
March, 2009	B-1138(0)	First print
February, 2010	B-1138(1)	\bullet New functions of system program version 220 \bullet Expansion RS485 Communication Module (FC5A-SIF4)

About This Manual

This user's manual primarily describes programming and powerful communications of the MicroSmart.

Chapter 1: Basic Instructions Reference

Programming of the basic instructions, available devices, and sample programs.
Chapter 2: Advanced Instructions
General rules of using advanced instructions, terms, data types, and formats used for advanced instructions.

Chapter 3 through Chapter 20:

Detailed descriptions on advanced instructions grouped into 18 chapters.

Chapter 21 through Chapter 25:

Various communication functions such as computer link, modem mode, Modbus TCP, AS-Interface, and expansion RS232C/RS485 communication.

Index

Alphabetical listing of key words.

IMPORTANT INFORMATION

Under no circumstances shall IDEC Corporation be held liable or responsible for indirect or consequential damages resulting from the use of or the application of IDEC PLC components, individually or in combination with other equipment.
All persons using these components must be willing to accept responsibility for choosing the correct component to suit their application and for choosing an application appropriate for the component, individually or in combination with other equipment.
All diagrams and examples in this manual are for illustrative purposes only. In no way does including these diagrams and examples in this manual constitute a guarantee as to their suitability for any specific application. To test and approve all programs, prior to installation, is the responsibility of the end user.

Related Manuals

The following manuals related to the FC5A series MicroSmart are available. Refer to them in conjunction with this manual.

Type No.	Manual Name	Description
FC9Y-B1273	FC5A Series MicroSmart Pentra User's Manual Advanced Volume (this manual)	Describes basic instruction list, move instructions, data comparison instruc- tions, binary arithmetic instructions, boolean computation instructions, shift/rotate instructions, data conversion instructions, week programmer instructions, interface instructions, program branching instructions, refresh instructions, interrupt control instructions, coordinate conversion instruc- tions, average instructions, pulse output instructions, PID instructions, dual/ teaching timer instructions, intelligent module access instructions, trigono- metric function instructions, logarithm/power instructions, file data process- ing instructions, clock instructions, computer link communication, modem communication, Modbus TCP communication, expansion RS232C/RS485 communication modules, and AS-Interface master modules.
	FC5A Series MicroSmart Pentra User's Manual Basic Volume	Fescribes module specifications, installation instructions, wiring instructions, basic operation, function settings, device list, basic instruction list, basic instructions, analog modules, user communication, data link communication, Modbus ASCI/RTU communication, and troubleshooting.
MicroSmart Pentra		
User's Manual		
Web Server CPU Module Volume		

Table of Contents

CHAPTER 1: Basic Instructions Reference
Basic Instruction List 1-1
ChAPTER 2: Advanced Instructions
Advanced Instruction List 2-1
Advanced Instruction Applicable CPU Modules 2-4
Structure of an Advanced Instruction 2-7
Input Condition for Advanced Instructions 2-7
Source and Destination Devices 2-7
Using Timer or Counter as Source Device 2-7
Using Timer or Counter as Destination Device 2-7
Data Types for Advanced Instructions (Integer Type) 2-8
Discontinuity of Device Areas 2-10
NOP (No Operation) 2-10
CHAPTER 3: Move Instructions
MOV (Move) 3-1
MOVN (Move Not) 3-5
IMOV (Indirect Move) 3-6
IMOVN (Indirect Move Not) 3-8
BMOV (Block Move) 3-9
IBMV (Indirect Bit Move) 3-10
IBMVN (Indirect Bit Move Not) 3-12
NSET (N Data Set) 3-13
NRS (N Data Repeat Set) 3-14
XCHG (Exchange) 3-15
TCCST (Timer/Counter Current Value Store) 3-16
CHAPTER 4: Data Comparison Instructions
CMP= (Compare Equal To) 4-1
CMP<> (Compare Unequal To) 4-1
CMP< (Compare Less Than) 4-1
CMP> (Compare Greater Than) 4-1
CMP<= (Compare Less Than or Equal To) 4-1
CMP>= (Compare Greater Than or Equal To) 4-2
ICMP>= (Interval Compare Greater Than or Equal To) 4-6
LC= (Load Compare Equal To) 4-8
LC<> (Load Compare Unequal To) 4-8
LC< (Load Compare Less Than) 4-8
LC> (Load Compare Greater Than) 4-8
LC<= (Load Compare Less Than or Equal To) 4-8
LC>= (Load Compare Greater Than or Equal To) 4-8
CHAPTER 5: Binary Arithmetic Instructions
ADD (Addition) 5-1
SUB (Subtraction) 5-1
MUL (Multiplication) 5-1
DIV (Division) 5-1
INC (Increment) 5-13
DEC (Decrement) 5-13
ROOT (Root) 5-15
SUM (Sum) 5-16
RNDM (Random) 5-19
Chapter 6: Boolean Computation Instructions
ANDW (AND Word) 6-1
ORW (OR Word) 6-1
XORW (Exclusive OR Word) 6-1
$C_{\text {HAPTER 7: }} \quad$ Shift / Rotate Instructions
SFTL (Shift Left) 7-1
SFTR (Shift Right) 7-3
BCDLS (BCD Left Shift) 7-5
WSFT (Word Shift) 7-7
ROTL (Rotate Left) 7-8
ROTR (Rotate Right) 7-10
CHAPTER 8: Data Conversion Instructions
HTOB (Hex to BCD) 8-1
BTOH (BCD to Hex) 8-3
HTOA (Hex to ASCII) 8-5
ATOH (ASCll to Hex) 8-7
BTOA (BCD to ASCII) 8-9
ATOB (ASCII to BCD) 8-12
ENCO (Encode) 8-15
DECO (Decode) 8-16
BCNT (Bit Count) 8-17
ALT (Alternate Output) 8-18
CVDT (Convert Data Type) 8-19
DTDV (Data Divide) 8-21
DTCB (Data Combine) 8-22
SWAP (Data Swap) 8-23
CHAPTER 9: Week Programmer Instructions
WKTIM (Week Timer) 9-1
WKTBL (Week Table) 9-2
Using Clock Cartridge 9-5
Setting Calendar/Clock Using WindLDR 9-6
Setting Calendar/Clock Using a User Program 9-6
Adjusting Clock Using a User Program 9-7
Adjusting Clock Cartridge Accuracy 9-8
C HAPTER 10: Interface Instructions
DISP (Display) 10-1
DGRD (Digital Read) 10-3
CHAPTER 11: Program Branching Instructions
LABEL (Label) 11-1
LMP (Label Jump) 11-1
LCAL (Label Call) 11-3
LRET (Label Return) 11-3
DJNZ (Decrement Jump Non-zero) 11-5
DI (Disable Interrupt) 11-7
El (Enable Interrupt) 11-7
IOREF (I/O Refresh) 11-9
HSCRF (High-speed Counter Refresh) 11-11
FRQRF (Frequency Measurement Refresh) 11-12
COMRF (Communication Refresh) 11-13
CHAPTER 12: Coordinate Conversion Instructions
XYFS (XY Format Set) 12-1
CVXTY (Convert X to Y) 12-2
CVYTX (Convert Y to X) 12-3
AVRG (Average) 12-7
ChAPTER 13: Pulse Instructions
PULS1 (Pulse Output 1) 13-2
PULS2 (Pulse Output 2) 13-2
PULS3 (Pulse Output 3) 13-2
PWM1 (Pulse Width Modulation 1) 13-8
PWM2 (Pulse Width Modulation 2) 13-8
PWM3 (Pulse Width Modulation 3) 13-8
RAMP1 (Ramp Control 1) 13-14
RAMP2 (Ramp Control 2) 13-14
ZRN1 (Zero Return 1) 13-26
ZRN2 (Zero Return 2) 13-26
ZRN3 (Zero Return 3) 13-26
$C_{\text {HAPTER 14: }}$ PID Instruction
PID (PID Control) 14-1
Application Examples 14-18
CHAPTER 15: Dual / Teaching Timer Instructions
DTML (1-sec Dual Timer) 15-1
DTIM (100-ms Dual Timer) 15-1
DTMH (10-ms Dual Timer) 15-1
DTMS (1-ms Dual Timer) 15-1
TTIM (Teaching Timer) 15-3
$C_{\text {HAPTER 16: Intelligent Module Access Instructions }}$
RUNA READ (Run Access Read) 16-2
RUNA WRITE (Run Access Write) 16-3
STPA READ (Stop Access Read) 16-4
STPA WRITE (Stop Access Write) 16-5
$C_{\text {HAPTER 17: }} \quad$ Trigonometric Function Instructions
RAD (Degree to Radian) 17-1
DEG (Radian to Degree) 17-2
SIN (Sine) 17-3
COS (Cosine) 17-4
TAN (Tangent) 17-5
ASIN (Arc Sine) 17-6
ACOS (Arc Cosine) 17-7
ATAN (Arc Tangent) 17-8
CHAPTER 18: Logarithm / Power InstructionsLOGE (Natural Logarithm)18-1
LOG10 (Common Logarithm) 18-2
EXP (Exponent) 18-3
POW (Power) 18-4
$C_{\text {HAPTER 19: File Data Processing Instructions }}$
FIFOF (FIFO Format) 19-1
FIEX (First-In Execute) 19-3
FOEX (First-Out Execute) 19-3
NDSRC (N Data Search) 19-5
$C_{\text {Hapter 20: }}$ Clock Instructions
TADD (Time Addition) 20-1
TSUB (Time Subtraction) 20-5
HTOS (HMS to Sec) 20-9
STOH (Sec to HMS) 20-10
HOUR (Hour Meter) 20-11
$C_{\text {HAPter 21: }}$ Computer Link Communication
Computer Link System Setup (1:N Computer Link System) 21-1
Programming WindLDR 21-2
Monitoring PLC Status 21-3
RS232C/RS485 Converter FC2A-MD1 21-4
$C_{\text {HAPteR 22: }}$ Modem Mode
System Setup 22-1
Applicable Modems 22-2
Special Internal Relays for Modem Mode 22-2
Special Data Registers for Modem Mode 22-3
Originate Mode 22-3
Disconnect Mode 22-5
AT General Command Mode 22-5
Answer Mode 22-6
Modem Mode Status Data Register 22-7
Initialization String Commands 22-8
Preparations for Using Modem 22-9
Programming Data Registers and Internal Relays 22-9
Setting Up the CPU Module 22-9
Programming WindLDR 22-10
Operating Procedure for Modem Mode 22-11
Sample Program for Modem Originate Mode 22-12
Sample Program for Modem Answer Mode 22-13
Troubleshooting in Modem Communication 22-14
CHAPTER 23: Modbus TCP Communication
Modbus TCP Communication General Information 23-1
Modbus TCP Master Communication 23-2
Modbus TCP Slave Communication 23-5
Programming the Web Server Module (FC4A-SX5ES1E) 23-8
Modbus TCP Communication Format 23-9
CHAPTER 24: AS-Interface Master Communication
About AS-Interface 24-1
Operation Basics 24-6
Pushbuttons and LED Indicators 24-14
AS-Interface Devices 24-18
Using Two AS-Interface Master Modules 24-32
Using WindLDR 24-34
SwitchNet Data I/O Port (AS-Interface Master Module 1) 24-39
C HAPTER 25: Expansion RS232C/RS485 Communication $^{\text {2 }}$
Allocating Communication Port Number 25-1
Computer Link Communication 25-2
Operator Interface Communication 25-6
User Communication 25-9
Troubleshooting 25-13
$I_{\text {noex }}$

1: BAsic Instructions Reference

Introduction

This chapter describes the list of basic instructions and brief description of each instruction.
For detail about each basic instruction, see the corresponding page in FC5A User's Manual Basic Volume (FC9Y-B1268).

Basic Instruction List

Symbol	Name	Function	See Page
AND	And	Series connection of NO contact	Basic Vol. 7-5
AND LOD	And Load	Series connection of circuit blocks	Basic Vol. 7-6
ANDN	And Not	Series connection of NC contact	Basic Vol. 7-5
BPP	Bit Pop	Restores the result of bit logical operation which was saved temporarily	Basic Vol. 7-7
BPS	Bit Push	Saves the result of bit logical operation temporarily	Basic Vol. 7-7
BRD	Bit Read	Reads the result of bit logical operation which was saved temporarily	Basic Vol. 7-7
$\mathrm{CC}=$	Counter Comparison (=)	Equal to comparison of counter current value	Basic Vol. 7-19
$\mathrm{CC} \geq$	Counter Comparison (\geq)	Greater than or equal to comparison of counter current value	Basic Vol. 7-19
CDP	Dual Pulse Reversible Counter	Dual pulse reversible counter (0 to 65,535)	Basic Vol. 7-12
CDPD	Double-word Dual Pulse Reversible Counter	Double-word dual pulse reversible counter (0 to 4,294,967,295)	Basic Vol. 7-16
CNT	Adding Counter	Adding counter (0 to 65,535)	Basic Vol. 7-12
CNTD	Double-word Adding Counter	Double-word adding counter (0 to 4,294,967,295)	Basic Vol. 7-15
CUD	Up/Down Selection Reversible Counter	Up/down selection reversible counter (0 to 65,535)	Basic Vol. 7-14
CUDD	Double-word Up/Down Selection Reversible Counter	Double-word up/down selection reversible counter (0 to 4,294,967,295)	Basic Vol. 7-17
DC=	Data Register Comparison (=)	Equal to comparison of data register value	Basic Vol. 7-21
DC \geq	Data Register Comparison (\geq)	Greater than or equal to comparison of data register value	Basic Vol. 7-21
END	End	Ends a program	Basic Vol. 7-31
JEND	Jump End	Ends a jump instruction	Basic Vol. 7-30
JMP	Jump	Jumps a designated program area	Basic Vol. 7-30
LOD	Load	Stores intermediate results and reads contact status	Basic Vol. 7-3

Name	Function	See Page	
LODN	Load Not	Stores intermediate results and reads inverted contact status	Basic Vol. 7-3
MCR	Master Control Reset	Ends a master control	Basic
MCS	Master Control Set	Starts a master control	Vol.
TM-28			

2: ADVANCED Instructions

Introduction

This chapter describes general rules of using advanced instructions, terms, data types, and formats used for advanced instructions.

Advanced Instruction List

Group	Symbol	Name	Valid Data Type					See Page
			W	1	D	L	F	
NOP	NOP	No Operation						2-10
Move	MOV	Move	X	X	X	X	X	3-1
	MOVN	Move Not	X	X	X	X		3-5
	IMOV	Indirect Move	X		X		X	3-6
	IMOVN	Indirect Move Not	X		X			3-8
	BMOV	Block Move	X					3-9
	IBMV	Indirect Bit Move	X					3-10
	IBMVN	Indirect Bit Move Not	X					3-12
	NSET	N Data Set	X	X	X	X	X	3-13
	NRS	N Data Repeat Set	X	X	X	X	X	3-14
	XCHG	Exchange	X		X			3-15
	TCCST	Timer/Counter Current Value Store	X		X			3-16
Data Comparison	CMP=	Compare Equal To	X	X	X	X	X	4-1
	CMP<>	Compare Unequal To	X	X	X	X	X	4-1
	CMP<	Compare Less Than	X	X	X	X	X	4-1
	CMP>	Compare Greater Than	X	X	X	X	X	4-1
	CMP<=	Compare Less Than or Equal To	X	X	X	X	X	4-1
	CMP>=	Compare Greater Than or Equal To	X	X	X	X	X	4-2
	ICMP>=	Interval Compare Greater Than or Equal To	X	X	X	X	X	4-6
	LC=	Load Compare Equal To	X	X	X	X	X	4-8
	LC<>	Load Compare Unequal To	X	X	X	X	X	4-8
	LC<	Load Compare Less Than	X	X	X	X	X	4-8
	LC>	Load Compare Greater Than	X	X	X	X	X	4-8
	LC<=	Load Compare Less Than or Equal To	X	X	X	X	X	4-8
	LC>=	Load Compare Greater Than or Equal To	X	X	X	X	X	4-8
Binary Arithmetic	ADD	Addition	X	X	X	X	X	5-1
	SUB	Subtraction	X	X	X	X	X	5-1
	MUL	Multiplication	X	X	X	X	X	5-1
	DIV	Division	X	X	X	X	X	5-1
	INC	Increment	X	X	X	X		5-13
	DEC	Decrement	X	X	X	X		5-13
	ROOT	Root	X		X		X	5-15
		Sum (ADD)	X	X	X	X	X	5-16
	SUM	Sum (XOR)	X					
	RNDM	Random	X					5-19
Boolean Computation	ANDW	AND Word	X		X			6-1
	ORW	OR Word	X		X			6-1
	XORW	Exclusive OR Word	X		X			6-1

Group	Symbol	Name	Valid Data Type					See Page
			W	1	D	L	F	
Shift and Rotate	SFTL	Shift Left						7-1
	SFTR	Shift Right						7-3
	BCDLS	BCD Left Shift			X			7-5
	WSFT	Word Shift	X					7-7
	ROTL	Rotate Left	x		X			7-8
	ROTR	Rotate Right	x		X			7-10
Data Conversion	HTOB	Hex to BCD	X		X			8-1
	BTOH	BCD to Hex	x		X			8-3
	HTOA	Hex to ASCII	X					8-5
	ATOH	ASCII to Hex	X					8-7
	BTOA	BCD to ASCII	x		X			8-9
	ATOB	ASCII to BCD	X		X			8-12
	ENCO	Encode						8-15
	DECO	Decode						8-16
	BCNT	Bit Count						8-17
	ALT	Alternate Output						8-18
	CVDT	Convert Data Type	X	X	X	X	X	8-19
	DTDV	Data Divide	X					8-21
	DTCB	Data Combine	x					8-22
	SWAP	Data Swap	X		X			8-23
Week Programmer	WKTIM	Week Timer						9-1
	WKTBL	Week Table						9-2
Interface	DISP	Display						10-1
	DGRD	Digital Read						10-3
User Communication	TXD1	Transmit 1						Basic Vol. 10-6
	TXD2	Transmit 2						Basic Vol. 10-6
	TXD3	Transmit 3						Basic Vol. 10-6
	TXD4	Transmit 4						Basic Vol. 10-6
	TXD5	Transmit 5						Basic Vol. 10-6
	TXD6	Transmit 6						Basic Vol. 10-6
	TXD7	Transmit 7						Basic Vol. 10-6
	RXD1	Receive 1						Basic Vol. 10-15
	RXD2	Receive 2						Basic Vol. 10-15
	RXD3	Receive 3						Basic Vol. 10-15
	RXD4	Receive 4						Basic Vol. 10-15
	RXD5	Receive 5						Basic Vol. 10-15
	RXD6	Receive 6						Basic Vol. 10-15
	RXD7	Receive 7						Basic Vol. 10-15
Program Branching	LABEL	Label						11-1
	LJMP	Label Jump						11-1
	LCAL	Label Call						11-3
	LRET	Label Return						11-3
	DJNZ	Decrement Jump Non-zero						11-5
	DI	Disable Interrupt						11-7
	El	Enable Interrupt						11-7
	IOREF	I/O Refresh						11-9
	HSCRF	High-speed Counter Refresh						11-11
	FRQRF	Frequency Measurement Refresh						11-12
	COMRF	Communication Refresh						11-13

Group	Symbol	Name	Valid Data Type					See Page
			W	I	D	L	F	
Coordinate Conversion	XYFS	XY Format Set	X	X				12-1
	CVXTY	Convert X to Y	X	X				12-2
	CVYTX	Convert Y to X	X	X				12-3
	AVRG	Average	X	X	X	X	X	12-7
Pulse	PULS1	Pulse Output 1						13-2
	PULS2	Pulse Output 2						13-2
	PULS3	Pulse Output 3						13-2
	PWM1	Pulse Width Modulation 1						13-8
	PWM2	Pulse Width Modulation 2						13-8
	PWM3	Pulse Width Modulation 3						13-8
	RAMP1	Ramp Pulse Output 1						13-14
	RAMP2	Ramp Pulse Output 2						13-14
	ZRN1	Zero Return 1						13-26
	ZRN2	Zero Return 2						13-26
	ZRN3	Zero Return 3						13-26
PID Instruction	PID	PID Control	X	X				14-1
Dual / Teaching Timer	DTML	1-sec Dual Timer						15-1
	DTIM	100-ms Dual Timer						15-1
	DTMH	10-ms Dual Timer						15-1
	DTMS	1-ms Dual Timer						15-1
	TTIM	Teaching Timer						15-3
Intelligent Module Access	RUNA	Run Access	X	X				16-2
	STPA	Stop Access	X	X				16-4
Trigonometric Function	RAD	Degree to Radian					X	17-1
	DEG	Radian to Degree					X	17-2
	SIN	Sine					X	17-3
	COS	Cosine					X	17-4
	TAN	Tangent					X	17-5
	ASIN	Arc Sine					X	17-6
	ACOS	Arc Cosine					X	17-7
	ATAN	Arc Tangent					X	17-8
Logarithm / Power	LOGE	Natural Logarithm					X	18-1
	LOG10	Common Logarithm					X	18-2
	EXP	Exponent					X	18-3
	POW	Power					X	18-4
File Data Processing	FIFOF	FIFO Format	X					19-1
	FIEX	First-In Execute	X					19-3
	FOEX	First-Out Execute	X					19-3
	NDSRC	N Data Search	X	X	X	X	X	19-5
Clock	TADD	Time Addition						20-1
	TSUB	Time Subtraction						20-5
	HTOS	HMS to Sec						20-9
	STOH	Sec to HMS						20-10
	HOUR	Hour Meter						20-11
Ethernet Instructions	EMAIL	Send E-mail						
	PING	Ping						
	ETXD	Transmit over Ethernet						
	ERXD	Receive over Ethernet						

2: Advanced Instructions

Advanced Instruction Applicable CPU Modules

Applicable advanced instructions depend on the type of CPU modules as listed in the table below.

Group	Symbol	All-in-One Type CPU Modules			Slim Type CPU Modules	
		FC5A-C10R2 FC5A-C10R2C FC5A-C10R2D	FC5A-C16R2 FC5A-C16R2C FC5A-C16R2D	FC5A-C24R2 FC5A-C24R2C FC5A-C24R2D	FC5A-D16RK1 FC5A-D16RS1	FC5A-D32K3 FC5A-D32S3 FC5A-D12K1E FC5A-D12S1E
NOP	NOP	X	X	X	X	X
Move	MOV	X	X	X	X	X
	MOVN	X	X	X	X	X
	IMOV	X	X	X	X	X
	IMOVN	X	X	X	X	X
	BMOV	X	X	X	X	X
	IBMV	X	X	X	X	X
	IBMVN	X	X	X	X	X
	NSET	X	X	X	X	X
	NRS	X	X	X	X	X
	XCHG	X	X	X	X	X
	TCCST	X	X	X	X	X
Data Comparison	CMP=	X	X	X	X	X
	CMP<>	X	X	X	X	X
	CMP<	X	X	X	X	X
	CMP>	X	X	X	X	X
	CMP<=	X	X	X	X	X
	CMP>=	X	X	X	X	X
	ICMP>=	X	X	X	X	X
	LC=	X	X	X	X	X
	LC<>	X	X	X	X	X
	LC<	X	X	X	X	X
	LC>	X	X	X	X	X
	LC<=	X	X	X	X	X
	LC> $=$	X	X	X	X	X
Binary Arithmetic	ADD	X	X	X	X	X
	SUB	X	X	X	X	X
	MUL	X	X	X	X	X
	DIV	X	X	X	X	X
	INC	X	X	X	X	X
	DEC	X	X	X	X	X
	ROOT	X	X	X	X	X
	SUM	X	X	X	X	X
	RNDM	X	X	X	X	X
Boolean Computation	ANDW	X	X	X	X	X
	ORW	X	X	X	X	X
	XORW	X	X	X	X	X
Shift and Rotate	SFTL	X	X	X	X	X
	SFTR	X	X	X	X	X
	BCDLS	X	X	X	X	X
	WSFT	X	X	X	X	X
	ROTL	X	X	X	X	X
	ROTR	X	X	X	X	X

Group	Symbol	All-in-One Type CPU Modules			Slim Type CPU Modules	
		FC5A-C10R2 FC5A-C10R2C FC5A-C10R2D	FC5A-C16R2 FC5A-C16R2C FC5A-C16R2D	FC5A-C24R2 FC5A-C24R2C FC5A-C24R2D	FC5A-D16RK1 FC5A-D16RS1	FC5A-D32K3 FC5A-D32S3 FC5A-D12K1E FC5A-D12S1E
Data Conversion	HTOB	X	X	X	X	X
	BTOH	X	X	X	X	X
	HTOA	X	X	X	X	X
	ATOH	X	X	X	X	X
	BTOA	X	X	X	X	X
	ATOB	X	X	X	X	X
	ENCO	X	X	X	X	X
	DECO	X	X	X	X	X
	BCNT	X	X	X	X	X
	ALT	X	X	X	X	X
	CVDT	X	X	X	X	X
	DTDV	X	X	X	X	X
	DTCB	X	X	X	X	X
	SWAP	X	X	X	X	X
Week Programmer	WKTIM	X	X	X	X	X
	WKTBL	X	X	X	X	X
Interface	DISP			X	X	X
	DGRD			X	X	X
User Communication	TXD1	X	X	X	X	X (Note 1)
	TXD2	X	X	X	X	X
	TXD3			X (Note 2)	X	X
	TXD4			X (Note 2)	X	X
	TXD5			X (Note 2)	X	X
	TXD6				X	X
	TXD7				X	X
	RXD1	X	X	X	X	X (Note 1)
	RXD2	X	X	X	X	X
	RXD3			X (Note 2)	X	X
	RXD4			X (Note 2)	X	X
	RXD5			X (Note 2)	X	X
	RXD6				X	X
	RXD7				X	X
Program Branching	LABEL	X	X	X	X	X
	LMP	X	X	X	X	X
	LCAL	X	X	X	X	X
	LRET	X	X	X	X	X
	DJNZ	X	X	X	X	X
	DI	X	X	X	X	X
	El	X	X	X	X	X
	IOREF	X	X	X	X	X
	HSCRF	X	X	X	X	X
	FRQRF	X	X	X	X	X
	COMRF			X (Note 2)	X	X
Coordinate Conversion	XYFS	X	X	X	X	X
	CVXTY	X	X	X	X	X
	CVYTX	X	X	X	X	X
	AVRG	X	X	X	X	X

Note 1: Not available on FC5A-D12K1E/S1E.
Note 2: Not available on FC5A-C24R2D.

Group	Symbol	All-in-One Type CPU Modules			Slim Type CPU Modules	
		FC5A-C10R2 FC5A-C10R2C FC5A-C10R2D	FC5A-C16R2 FC5A-C16R2C FC5A-C16R2D	FC5A-C24R2 FC5A-C24R2C FC5A-C24R2D	FC5A-D16RK1 FC5A-D16RS1	$\begin{aligned} & \text { FC5A-D32K3 } \\ & \text { FC5A-D32S3 } \\ & \text { FC5A-D12K1E } \\ & \text { FC5A-D12S1E } \end{aligned}$
Pulse	PULS1				X	X
	PULS2				X	X
	PULS3					X
	PWM1				X	X
	PWM2				X	X
	PWM3					X
	RAMP1				X	X
	RAMP2					X
	ZRN1				X	X
	ZRN2				X	X
	ZRN3					X
PID Instruction	PID			X	X	X
Dual / Teaching Timer	DTML	X	X	X	X	X
	DTIM	X	X	X	X	X
	DTMH	X	X	X	X	X
	DTMS	X	X	X	X	X
	TTIM	X	X	X	X	X
Intelligent Module Access	RUNA			X (Note 1)	X	X
	STPA			X (Note 1)	X	X
Trigonometric Function	RAD	X	X	X	X	X
	DEG	X	X	X	X	X
	SIN	X	X	X	X	X
	COS	X	X	X	X	X
	TAN	X	X	X	X	X
	ASIN	X	X	X	X	X
	ACOS	X	X	X	X	X
	ATAN	X	X	X	X	X
Logarithm / Power	LOGE	X	X	X	X	X
	LOG10	X	X	X	X	X
	EXP	X	X	X	X	X
	POW	X	X	X	X	X
File Data Processing	FIFOF	X	X	X	X	X
	FIEX	X	X	X	X	X
	FOEX	X	X	X	X	X
	NDSRC	X	X	X	X	X
Clock	TADD	X	X	X	X	X
	TSUB	X	X	X	X	X
	HTOS	X	X	X	X	X
	STOH	X	X	X	X	X
	HOUR	X	X	X	X	X
Ethernet Instructions	EMAIL					X (Note 2)
	PING					X (Note 2)
	ETXD					X (Note 2)
	ERXD					X (Note 2)

Note 1: Not available on FC5A-C24R2D.
Note 2: Ethernet instructions can only be used with FC5A-D12K1E and FC5A-D12S1E.

Structure of an Advanced Instruction

Repeat Designation

Specifies whether repeat is used for the device or not.

Repeat Cycles

Specifies the quantity of repeat cycles: 1 through 99.

Opcode

The opcode is a symbol to identify the advanced instruction.
Data Type
Specifies the word (W), integer (I), double word (D), long (L), or float (F) data type.

Source Device

The source device specifies the 16 - or 32 -bit data to be processed by the advanced instruction. Some advanced instructions require two source devices.

Destination Device

The destination device specifies the 16 - or 32 -bit data to store the result of the advanced instruction. Some advanced instructions require two destination devices.

Input Condition for Advanced Instructions

Almost all advanced instructions must be preceded by a contact, except NOP (no operation), LABEL (label), LRET (label return), and STPA (stop access) instructions. The input condition can be programmed using a bit device such as input, output, internal relay, or shift register. Timer and counter can also be used as an input condition to turn on the contact when the timer times out or the counter counts out.

While the input condition is on, the advanced instruction is executed in each scan. To execute the advanced instruction only at the rising or falling edge of the input, use the SOTU
 or SOTD instruction.

While the input condition is off, the advanced instruction is not executed and device statuses are held.

Source and Destination Devices

The source and destination devices specify 16- or 32-bit data, depending on the selected data type. When a bit device such as input, output, internal relay, or shift register is designated as a source or destination device, 16 or 32 points starting with the designated number are processed as source or destination data. When a word device such as timer or counter is designated as a source device, the current value is read as source data. When a timer or counter is designated as a destination device, the result of the advanced instruction is set to the preset value for the timer or counter. When a data register is designated as a source or destination device, the data is read from or written to the designated data register.

Using Timer or Counter as Source Device

Since all timer instructions - TML (1-sec timer), TIM (100-ms timer), TMH (10-ms timer), and TMS (1-ms timer) subtract from the preset value, the current value is decremented from the preset value and indicates the remaining time. As described above, when a timer is designated as a source device of an advanced instruction, the current value, or the remaining time, of the timer is read as source data. Adding counters CNT start counting at 0 , and the current value is incremented up to the preset value. Reversible counters CDP and CUD start counting at the preset value and the current value is incremented or decremented from the preset value. When any counter is designated as a source device of an advanced instruction, the current value is read as source data.

Using Timer or Counter as Destination Device

As described above, when a timer or counter is designated as a destination device of an advanced instruction, the result of the advanced instruction is set to the preset value of the timer or counter. Timer and counter preset values can be 0 through 65535.
When a timer or counter preset value is designated using a data register, the timer or counter cannot be designated as a destination of an advanced instruction. When executing such an advanced instruction, a user program execution error will result. For details of user program execution error, see page 13-2 (Basic Vol.).

Note: When a user program execution error occurs, the result is not set to the destination.

Data Types for Advanced Instructions (Integer Type)

When using move, data comparison, binary arithmetic, Boolean computation, bit shift/rotate, data conversion, and coordinate conversion instructions, data types can be selected from word (W), integer (I), double word (D), long (L), or float (F). For other advanced instructions, the data is processed in units of 16-bit word.

Data Type	Symbol	Bits	Quantity of Data Registers Used	Range of Decimal Values
Word (Unsigned 16 bits)	\mathbf{W}	16 bits	1	0 to 65,535
Integer (Signed 15 bits)	\mathbf{I}	16 bits	1	$-32,768$ to 32,767
Double Word (Unsigned 32 bits)	\mathbf{D}	32 bits	2	0 to 4,294,967,295
Long (Signed 31 bits)	\mathbf{L}	32 bits	2	$-2,147,483,648$ to $2,147,483,647$
Float (Floating point)	\mathbf{F}	32 bits	2	-3.402823×10^{38} to 3.402823×10^{38}

Decimal Values and Hexadecimal Storage (Word, Integer, Double, and Long Data Types)

The following table shows hexadecimal equivalents which are stored in the CPU, as a result of addition and subtraction of the decimal values shown:

Data Type	Result of Addition	Hexadecimal Storage	Result of Subtraction	Hexadecimal Storage
Word	$\begin{gathered} 0 \\ 65535 \\ 131071 \end{gathered}$	0000 FFFF (CY) FFFF	$\begin{gathered} 65535 \\ 0 \\ -1 \\ -65535 \\ -65536 \end{gathered}$	FFFF 0000 (BW) FFFF (BW) 0001 (BW) 0000
Integer	$\begin{gathered} 65534 \\ 32768 \\ 32767 \\ 0 \\ -1 \\ -32767 \\ -32768 \\ -32769 \\ -65535 \end{gathered}$	$\begin{gathered} \text { (CY) 7FFE } \\ \text { (CY) } 0000 \\ \text { 7FFF } \\ 0000 \\ \text { FFFF } \\ 8001 \\ 8000 \\ \text { (CY) FFFF } \\ \text { (CY) } 8001 \end{gathered}$	$\begin{gathered} 65534 \\ 32768 \\ 32767 \\ 0 \\ -1 \\ -32767 \\ -32768 \\ -32769 \\ -65535 \end{gathered}$	$\begin{gathered} \text { (BW) 7FFE } \\ \text { (BW) } 0000 \\ \text { 7FFF } \\ 0000 \\ \text { FFFF } \\ 8001 \\ 8000 \\ \text { (BW) FFFF } \\ \text { (BW) } 8001 \end{gathered}$
Double Word	$\begin{gathered} \hline 0 \\ 4294967295 \\ 8589934591 \end{gathered}$	00000000 FFFFFFFF (CY) FFFFFFFFF	$\begin{gathered} 4294967295 \\ 0 \\ -1 \\ -4294967295 \\ -4294967296 \end{gathered}$	FFFFFFFFF 00000000 (BW) FFFFFFFF (BW) 00000001 (BW) 00000000
Long	$\begin{gathered} 4294967294 \\ 2147483648 \\ 2147483647 \\ 0 \\ -1 \\ -2147483647 \\ -2147483648 \\ -2147483649 \\ -4294967295 \end{gathered}$	(CY) 7FFFFFFE (CY) 00000000 7FFFFFFF 00000000 FFFFFFFF 80000001 80000000 (CY) FFFFFFFF (CY) 80000001	$\begin{gathered} 4294967294 \\ 2147483648 \\ 2147483647 \\ 0 \\ -1 \\ -2147483647 \\ -2147483648 \\ -2147483649 \\ -4294967295 \end{gathered}$	$\begin{gathered} \text { (BW) 7FFFFFFE } \\ \text { (BW) } 00000000 \\ 7 F F F F F F F \\ 00000000 \\ \text { FFFFFFFF } \\ 80000001 \\ 80000000 \\ \text { (BW) FFFFFFFF } \\ \text { (BW) } 80000001 \end{gathered}$

Floating-Point Data Format

The FC5A MicroSmart can specify the floating-point data type (F) for advanced instructions. Like the double word (D) and long integer (L) data types, the floating-point data type also uses two consecutive data registers to execute advanced instructions. The FC5A MicroSmart supports the floating-point data based on the single storage format of the IEEE (The Institute of Electrical and Electronics Engineers) Standard 754.

Single Storage Format

The IEEE single format consists of three fields: a 23-bit fraction, f ; an 8-bit biased exponent, e; and 1-bit sign, s. These fields are stored contiguously in one 32-bit word, as shown in the figure below. Bits 0:22 contain the 23-bit fraction, f, with bit 0 being the least significant bit of the fraction and bit 22 being the most significant; bits 23:30 contain the 8-bit biased exponent, e, with bit 23 being the least significant bit of the biased exponent and bit 30 being the most significant; and the highest-order bit 31 contains the sign bit, s .

Single Storage Format

The table below shows the correspondence between the values of the three constituent fields s, e, and f and the value represented by the single format bit pattern. When any value out of the bit pattern is entered to the advanced instruction or when execution of advanced instructions, such as division by zero, has produced any value out of the bit pattern, a user program execution error will result, turning on special internal relay M8004 and the ERR LED on the CPU module.

Single Format Bit Patters	Value
$0<e<255$	$(-1)^{5} \times 2^{e-127} \times 1 . f$ (normal numbers)
$e=0 ; f=0$ (all bits in f are zero)	$(-1)^{5} \times 2^{e-127} \times 0.0$ (signed zero)

Carry and Borrow in Floating-Point Data Processing

When advanced instructions involving floating-point data are executed, special internal relay M8003 (carry and borrow) is updated.

M8003	Execution Result	Value
1	$\neq 0$	Overflow (out of the range between -3.402823×10^{38} and 3.402823×10^{38})
1	0	Not zero (within the range between $-1.175495 \times 10^{-38}$ and 1.175495×10^{-38})
0	0	Zero

Double-word Devices in Data Registers

When the double-word data type is selected for the source or destination device, the data is loaded from or stored to two consecutive data registers. The order of the two devices depends on the device type.
When a data register, timer, or counter is selected as a double-word device, the high-word data is loaded from or stored to the first device selected. The low-word data is loaded from or stored to the subsequent device.

Example: When data register D10 is designated as a double-word source device and data register D20 is designated as a double-word destination device, the data is loaded from or stored to two consecutive data registers as illustrated below.

Note: The above example is the default setting of the FC5A MicroSmart. The order of two devices can be selected on CPU modules with system program version 110 or higher. See page 5-46 (Basic Vol.).

Discontinuity of Device Areas

Each device area is discrete and does not continue, for example, from input to output or from output to internal relay. In addition, special internal relays M8000 through M8157 (all-in-one type CPU) or M8317 (slim type CPU) are in a separate area from internal relays M0 through M2557. Data registers DO through D1999, expansion data registers D2000 through D7999 (slim type CPU only), and special data registers D8000 through D8199 (all-in-one type CPU) or D8499 (slim type CPU) are in separate areas and do not continue with each other.

The internal relay ends at M2557. Since the MOV (move) instruction reads 16 internal relays, the last internal relay exceeds the valid range, resulting in a user program syntax error.

Advanced instructions execute operation only on the available devices in the valid area. If a user program syntax error is found during programming, WindLDR rejects the program instruction and shows an error message.

The MOV (move) instruction sets data of data register D0 to 16 outputs Q610 through Q627 in the first repeat cycle. The destination of the second cycle is the next 16 outputs Q630 through Q647, which are invalid, resulting in a user program syntax error.
For details about repeat operations of each advanced instruction, see the following chapters.

NOP (No Operation)

No operation is executed by the NOP instruction.
The NOP instruction may serve as a place holder. Another use would be to add a delay to the CPU scan time, in order to simulate communication with a machine or application, for debugging purposes.
The NOP instruction does not require an input and device.
Details of all other advanced instructions are described in the following chapters.

3: Move Instructions

Introduction

Data can be moved using the MOV (move), MOVN (move not), IMOV (indirect move), or IMOVN (indirect move not) instruction. The moved data is 16 - or 32-bit data, and the repeat operation can also be used to increase the quantity of data moved. In the MOV or MOVN instruction, the source and destination device are designated by S1 and D1 directly. In the IMOV or IMOVN instruction, the source and destination device are determined by the offset values designated by S2 and D2 added to source device S1 and destination device D1.
The BMOV (block move) instruction is useful to move consecutive blocks of timer, counter, and data register values.
The IBMV (indirect bit move) and IBMVN (indirect bit move not) instructions move one bit of data from a source device to a destination device. Both devices are determined by adding an offset to the device.
NSET (N data set) and NRS (N data repeat set) instructions can be used to set values to a group of devices. The XCHG (exchange) instruction is used to swap word or double-word data between two devices. The current values of timer or counter can be changed using the TCCST (timer/counter current value store) instruction.
Since the move instructions are executed in each scan while input is on, a pulse input from a SOTU or SOTD instruction should be used as required.

MOV (Move)

$\mathrm{S} 1 \rightarrow \mathrm{D} 1$
When input is on, 16- or 32-bit data from device designated by S 1 is moved to device designated by D1.
The float data type is available on upgraded CPU modules with system program version 200 or higher.

Applicable CPU Modules

FC5A-C10R2/C/D	FC5A-C16R2/C/D	FC5A-C24R2/C/D	FC5A-D16RK1/RS1	FC5A-D32K3/S3	FC5A-D12K1E/S1E
X	X	X	X	X	X

Valid Devices

Device	Function	I	\mathbf{Q}	\mathbf{M}	\mathbf{R}	\mathbf{T}	\mathbf{C}	D	Constant	Repeat
S1 (Source 1)	First device address to move	X	$1-99$							
D1 (Destination 1)	First device address to move to	-	X	\mathbf{A}	X	X	X	X	-	$1-99$

For the valid device address range, see pages 6-1 and 6-2 (Basic Vol.).
. Internal relays M0 through M2557 can be designated as D1. Special internal relays cannot be designated as D1.
Source device can be both internal relays M0 through M2557 and special internal relays M8000 through M8157 (all-in-one type CPU) or M8317 (slim type CPU).
When T (timer) or C (counter) is used as S 1 , the timer/counter current value (TC or CC) is read out. When T (timer) or C (counter) is used as D1, the data is written in as a preset value (TP or CP) which can be 0 through 65535.
When F (float) data type is selected, only data register and constant can be designated as $S 1$, and only data register can be designated as D1.
When F (float) data type is selected and S 1 does not comply with the normal floating-point format, a user program execution error will result, turning on special internal relay M8004 and ERR LED on the CPU module.

Valid Data Types

\mathbf{W} (word)	X
I (integer)	X
D (double word)	X
L (long)	X
F (float)	X

When a bit device such as I (input), Q (output), M (internal relay), or R (shift register) is designated as the source or destination, 16 points (word or integer data type) or 32 points (double-word or long data type) are used. When repeat is designated for a bit device, the quantity of device bits increases in 16 - or 32-point increments.
When a word device such as T (timer), C (counter), or D (data register) is designated as the source or destination, 1 point (word or integer data type) or 2 points (double-word, long, or float data type) are used. When repeat is designated for a word device, the quantity of device words increases in 1- or 2point increments.

Examples: MOV

Data Type: Word

$$
\mathrm{D} 10 \rightarrow \mathrm{MO}
$$

When input 12 is on, the data in data register D10 designated by source device S1 is moved to 16 internal relays starting with MO designated by destination device D1.
D10 $12345 \longrightarrow$ M0 through M7, M10 through M17
The data in the source data register is converted into 16-bit binary data, and the ON/OFF statuses of the 16 bits are moved to internal relays MO through M7 and M10 through M17. M0 is the LSB (least significant bit). M17 is the MSB (most significant bit).

Data Type: Word

$810 \rightarrow$ D2
When input 10 is on, constant 810 designated by source device S1 is moved to data register D2 designated by destination device D1.

Data move operation for the integer data type is the same as for the word data type.

Data Type: Double Word

$810 \rightarrow$ D2•D3
When input 10 is on, constant 810 designated by source device S1 is moved to data registers D2 and D3 designated by destination device D1.

Data move operation for the long data type is the same as for the double-word data type.

Data Type: Word

	MOV(W)	S1-	D1-
D10	REP		

$\mathrm{D} 10 \rightarrow \mathrm{D} 2$
When input I 1 is on, the data in data register D10 designated by source device S 1 is moved to data register D2 designated by destination device D1.

Data Type: Double Word

D10•D11 \rightarrow D2•D3
When input I1 is on, the data in data registers D10 and D11 designated by source device S 1 is moved to data registers D2 and D3 designated by destination device D1.

Double-word Data Move in Data Registers

When a data register, timer, or counter is selected as a double-word device, the upper-word data is loaded from or stored to the first device selected. The lower-word data is loaded from or stored to the subsequent device.

Double-word Destination Device: Data Register

Double-word Data Move to Data Registers

Low Word D1

Repeat Operation in the Move Instructions

Repeat Source Device

When the S1 (source) is designated with repeat, devices as many as the repeat cycles starting with the device designated by S 1 are moved to the destination. As a result, only the last of the source devices is moved to the destination.

- Data Type: Word

- Data Type: Double Word

Repeat Destination Device

When the D1 (destination) is designated to repeat, the source device designated by S1 is moved to all destination devices as many as the repeat cycles starting with the destination designated by D1.

- Data Type: Word

- Data Type: Double Word

Repeat Source and Destination Devices

When both S1 (source) and D1 (destination) are designated to repeat, devices as many as the repeat cycles starting with the device designated by S1 are moved to the same quantity of devices starting with the device designated by D1.

Note: The BMOV (block move) instruction has the same effect as the MOV instruction with both the source and destination designated to repeat.

- Data Type: Word

$|$| | | |
| :--- | :--- | :--- | :---: |
| 15 | | |

Source	epeat $=$	Destinati	(Repe
D10	110	\rightarrow D20	110
D11	111	\rightarrow D21	111
D12	112	\rightarrow D22	112

Source	epeat $=3$)	Destinatio	
D10	110	- D20	11
D11	111	- D21	11
D12	112	- D22	11
D13	113	- D23	11
D14	114	- D24	11
D15	115	- D25	11

- Data Type: Float

When a source data does not comply with the normal floating-point format in any repeat operation, a user program execution error occurs, and the source data is not moved to the destination.

Source (Repeat = 3)		Destination (Repeat $=3$)	
D10.D11	1.5	D20.D21	1.5
D12.D13	Invalid	\longrightarrow D22.D23	11.1
D14.D15	3.44	D24.D25	3.44

Repeat Bit Devices

The MOV (move) instruction moves 16-bit data (word or integer data type) or 32-bit data (double-word or integer data type). When a bit device such as input, output, internal relay, or shift register is designated as the source or destination device, 16 or 32 bits starting with the one designated by S1 or D1 are the target data. If a repeat operation is designated for a bit device, the target data increases in 16- or 32-bit increments, depending on the selected data type.

- Data Type: Word

- Data Type: Double Word

$\left|\begin{array}{lllc|} & \text { MOV(D) } & \text { S1- } & \text { D1 R } \\ \text { REP } \\ \text { D10 } & \text { M0 } & 3\end{array}\right|$

Overlapped Devices by Repeat

If the repeat operation is designated for both the source and destination and if a portion of the source and destination areas overlap each other, then the source data in the overlapped area is also changed.

MOVN (Move Not)

S1 NOT \rightarrow D1
When input is on, 16- or 32-bit data from device designated by S 1 is inverted bit by bit and moved to device designated by D1.

Applicable CPU Modules

FC5A-C10R2/C/D	FC5A-C16R2/C/D	FC5A-C24R2/C/D	FC5A-D16RK1/RS1	FC5A-D32K3/S3	FC5A-D12K1E/S1E
X	X	X	X	X	X

Valid Devices

Device	Function	I	Q	M	R	T	C	D	Constant	Repeat
S1 (Source 1)	First device address to move	X	X	X	X	X	X	X	X	1-99
D1 (Destination 1)	First device address to move to	-	X	(X	X	X	X	-	1-99

For the valid device address range, see pages 6-1 and 6-2 (Basic Vol.).
A Internal relays M0 through M2557 can be designated as D1. Special internal relays cannot be designated as D1.
When T (timer) or C (counter) is used as S1, the timer/counter current value (TC or CC) is read out. When T (timer) or C (counter) is used as D1, the data is written in as a preset value (TP or CP) which can be 0 through 65535.

Valid Data Types

W (word)	X
I (integer)	X
D (double word)	X
L (long)	X
F (float)	-

When a bit device such as I (input), Q (output), M (internal relay), or R (shift register) is designated as the source or destination, 16 points (word or integer data type) or 32 points (double-word or long data type) are used. When repeat is designated for a bit device, the quantity of device bits increases in 16- or 32-point increments.

When a word device such as T (timer), C (counter), or D (data register) is designated as the source or destination, 1 point (word or integer data type) or 2 points (double-word or long data type) are used. When repeat is designated for a word device, the quantity of device words increases in 1- or 2-point increments.

Examples: MOVN

M10 NOT \rightarrow M50
When input 10 is on, the 16 internal relays starting with M 10 designated by source device S 1 are inverted bit by bit and moved to 16 internal relays starting with M50 designated by destination device D1.
M10 through M17, M20 through M27 NOT \longrightarrow M50 through M57, M60 through M67

The ON/OFF statuses of the 16 internal relays M10 through M17 and M20 through M27 are inverted and moved to 16 internal relays M50 through M57 and M60 through M67. M50 is the LSB (least significant bit), and M67 is the MSB (most significant bit).

810 NOT \rightarrow D2
When input I1 is on, decimal constant 810 designated by source device S 1 is converted into 16-bit binary data, and the ON/OFF statuses of the 16 bits are inverted and moved to data register D2 designated by destination device D1.

IMOV (Indirect Move)

S1 + S2 \rightarrow D1 + D2

When input is on, the values contained in devices designated by S1 and S2 are added to determine the source of data. The 16- or 32-bit data so determined is moved to destination, which is determined by the sum of values contained in devices designated by D1 and D2.
The float data type is available on upgraded CPU modules with system program version 200 or higher.

Applicable CPU Modules

| FC5A-C10R2/C/D | FC5A-C16R2/C/D | FC5A-C24R2/C/D | FC5A-D16RK1/RS1 | FC5A-D32K3/S3 | FC5A-D12K1E/S1E |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| X | X | X | X | X | X |

Valid Devices

Device	Function	I	Q	M	R	T	C	D	Constant	Repeat
S1 (Source 1)	Base address to move from	X	X	X	X	X	X	X	-	1-99
S2 (Source 2)	Offset for S1	X	X	X	X	X	X	X	-	-
D1 (Destination 1)	Base address to move to	-	X	(X	X	X	X	-	1-99
D2 (Destination 2)	Offset for D1	X	X	X	X	X	X	X	-	-

For the valid device address range, see pages 6-1 and 6-2 (Basic Vol.).
in Internal relays M0 through M2557 can be designated as D1. Special internal relays cannot be designated as D1.
When T (timer) or C (counter) is used as S1, S2, or D2, the device data is the timer/counter current value (TC or CC). When T (timer) or C (counter) is used as D1, the device data is the timer/counter preset value (TP or CP) which can be 0 through 65535 .

When F (float) data type is selected, only data register can be designated as S1 or D1.
When F (float) data type is selected and S 1 does not comply with the normal floating-point format, a user program execution error will result, turning on special internal relay M8004 and ERR LED on the CPU module.
Either source device S2 or destination device D2 does not have to be designated. If S2 or D2 is not designated, the source or destination device is determined by S 1 or D1 without offset.
Make sure that the source data determined by $\mathrm{S} 1+\mathrm{S} 2$ and the destination data determined by $\mathrm{D} 1+\mathrm{D} 2$ are within the valid device range. If the derived source or destination device is out of the valid device range, a user program execution error will result, turning on special internal relay M8004 and the ERR LED on the CPU module.

Valid Data Types

\mathbf{W} (word)	X
\mathbf{I} (integer)	-
\mathbf{D} (double word)	X
\mathbf{L} (long)	-
F (float)	X

When a bit device such as I (input), Q (output), M (internal relay), or R (shift register) is designated as the source or destination, 16 points (word data type) or 32 points (double-word data type) are used. When repeat is designated for a bit device, the quantity of device bits increases in 16 - or 32-point increments.

When a word device such as T (timer), C (counter), or D (data register) is designated as the source or destination, 1 point (word data type) or 2 points (double-word or float data type) are used. When repeat is designated for a word device, the quantity of device words increases in 1- or 2-point increments.

Example: IMOV

- Data Type: Word

10	$\mathrm{IMOV}(\mathrm{W})$	$\mathrm{S} 1-$	S 2	$\mathrm{D} 1-$	D 2	REP
	D 20	C 10	D 10	D 25		

$$
\mathrm{D} 20+\mathrm{C} 10 \rightarrow \mathrm{D} 10+\mathrm{D} 25
$$

Source device S1 and destination device D1 determine the type of device. Source device S2 and destination device D2 are the offset values to determine the source and destination devices.
If the current value of counter C10 designated by source device $S 2$ is 4 , the source data is determined by adding the offset to data register D20 designated by source device S1:
$D(20+4)=D 24$
If data register D25 contains a value of 20, the destination is determined by adding the offset to data register D10 designated by destination device D1:
$D(10+20)=D 30$
As a result, when input IO is on, the data in data register D24 is moved to data register D30.

- Data Type: Float

11	$\mathrm{IMOV}(\mathrm{F})$	$\mathrm{S} 1-$	S 2	$\mathrm{D} 1-$	D 2
	REP				
	D 20	D 50	D 10	D 51	
10					

$$
\text { D20 + D50 } \rightarrow \text { D10 + D51 }
$$

If data register D50 contains a value of 2 , the source data is determined by adding the offset to data register $D 20$ designated by source device $\mathrm{S} 1: \mathrm{D}(20+2)=\mathrm{D} 22$
If data register D51 contains a value of 20 , the destination is determined by adding the offset to data register D10 designated by destination device D1: D(10 + 20) = D30
As a result, when input 10 is on, the data in data registers D22•D23 is moved to data registers D30•D31.

IMOVN (Indirect Move Not)

$\mathrm{S} 1+\mathrm{S} 2 \mathrm{NOT} \rightarrow \mathrm{D} 1+\mathrm{D} 2$
When input is on, the values contained in devices designated by S1 and S2 are added to determine the source of data. The 16 - or 32 -bit data so determined is inverted and moved to destination, which is determined by the sum of values contained in devices designated by D1 and D2.

Applicable CPU Modules

FC5A-C10R2/C/D	FC5A-C16R2/C/D	FC5A-C24R2/C/D	FC5A-D16RK1/RS1	FC5A-D32K3/S3	FC5A-D12K1E/S1E
X	X	X	X	X	X

Valid Devices

Device	Function	I	Q	M	R	T	C	D	Constant	Repeat
S1 (Source 1)	Base address to move from	X	X	X	X	X	X	X	-	1-99
S2 (Source 2)	Offset for S1	X	X	X	X	X	X	X	-	-
D1 (Destination 1)	Base address to move to	-	X	$\underline{1}$	X	X	X	X	-	1-99
D2 (Destination 2)	Offset for D1	X	X	X	X	X	X	X	-	-

For the valid device address range, see pages 6-1 and 6-2 (Basic Vol.).
A Internal relays M0 through M2557 can be designated as D1. Special internal relays cannot be designated as D1.
When T (timer) or C (counter) is used as S1, S2, or D2, the device data is the timer/counter current value (TC or CC). When T (timer) or C (counter) is used as D1, the device data is the timer/counter preset value (TP or CP), 0 through 65535.
Either source device $S 2$ or destination device D 2 does not have to be designated. If S2 or D2 is not designated, the source or destination device is determined by S1 or D1 without offset.
Make sure that the source data determined by S1 + S2 and the destination data determined by D1 + D2 are within the valid device range. If the derived source or destination device is out of the valid device range, a user program execution error will result, turning on special internal relay M8004 and the ERR LED on the CPU module.

Valid Data Types

W (word)	X
I (integer)	-
D (double word)	X
L (long)	-
F (float)	-

When a bit device such as I (input), Q (output), M (internal relay), or R (shift register) is designated as the source or destination, 16 points (word data type) or 32 points (double-word data type) are used. When repeat is designated for a bit device, the quantity of device bits increases in 16- or 32-point increments.

When a word device such as T (timer), C (counter), or D (data register) is designated as the source or destination, 1 point (word data type) or 2 points (double-word data type) are used. When repeat is designated for a word device, the quantity of device words increases in 1- or 2-point increments.

Example: IMOVN

$\mathrm{C} 10+\mathrm{D} 10 \mathrm{NOT} \rightarrow \mathrm{D} 30+\mathrm{D} 20$
Source device S1 and destination device D1 determine the type of device. Source device S2 and destination device D2 are the offset values to determine the source and destination devices.

If the data of data register D10 designated by source device $S 2$ is 4 , then the source data is determined by adding the offset to counter C10 designated by source device S1:
$C(10+4)=C 14$
If data register D20 designated by destination device D2 contains a value of 15 , then the destination is determined by adding the offset to data register D30 designated by destination device D1:
$D(30+15)=D 45$
As a result, when input 10 is on, the current value of counter C14 is inverted and moved to data register D45.

BMOV (Block Move)

$\mathrm{S} 1, \mathrm{~S} 1+1, \mathrm{~S} 1+2, \ldots, \mathrm{~S} 1+\mathrm{N}-1 \rightarrow \mathrm{D} 1, \mathrm{D} 1+1, \mathrm{D} 1+2, \ldots, \mathrm{D} 1+\mathrm{N}-1$
When input is on, N blocks of 16-bit word data starting with device designated by S1 are moved to N blocks of destinations, starting with device designated by D1. N-W specifies the quantity of blocks to move.

N blocks of 16-bit data

N blocks of 16-bit data

Applicable CPU Modules

FC5A-C10R2/C/D	FC5A-C16R2/C/D	FC5A-C24R2/C/D	FC5A-D16RK1/RS1			FC5A-D32K3/S3				FC5A-D12K1E/S1E	
X	X	X	X			X				X	
Valid Devices											
Device	Function		I	Q	M	R	T	C	D	Constant	Repeat
S1 (Source 1)	First device address to move		X	X	X	X	X	X	X	-	-
N-W (N words)	Quantity of blocks to move		X	X	X	X	X	X	X	X	-
D1 (Destination 1)	First device address to move to		-	X	(X	X	X	X	-	-

For the valid device address range, see pages 6-1 and 6-2 (Basic Vol.).
A Internal relays M0 through M2557 can be designated as D1. Special internal relays cannot be designated as D1.
When T (timer) or C (counter) is used as S 1 or $\mathrm{N}-\mathrm{W}$, the timer/counter current value (TC or CC) is read out. When T (timer) or C (counter) is used as D1, the data is written in as a preset value (TP or CP) which can be 0 through 65535.

Make sure that the last source data determined by $\mathrm{S} 1+\mathrm{N}-1$ and the last destination data determined by $\mathrm{D} 1+\mathrm{N}-1$ are within the valid device range. If the derived source or destination device is out of the valid device range, a user program execution error will result, turning on special internal relay M8004 and the ERR LED on the CPU module.

Valid Data Types

W (word)	X
I (integer)	-
\mathbf{D} (double word)	-
\mathbf{L} (long)	-
F (float)	-

When a bit device such as I (input), Q (output), M (internal relay), or R (shift register) is designated as the source, N-W, or destination, 16 points (word data type) are used.
When a word device such as T (timer), C (counter), or D (data register) is designated as the source, $\mathrm{N}-\mathrm{W}$, or destination, 1 point (word data type) is used.

Special Internal Relay M8024: BMOV/WSFT Executing Flag

While the BMOV or WSFT is executed, M8024 turns on. When completed, M8024 turns off. If the CPU is powered down while executing BMOV or WSFT, M8024 remains on when the CPU is powered up again.

Example: BMOV

$\left.11-\mathrm{SOTU}-\mathrm{BMOV}(\mathrm{W})$	S1	$\mathrm{N}-\mathrm{W}$	D 1
D 10	5	D 20	\right\rvert\,

D10 through D14 \rightarrow D20 through D24
When input 10 is turned on, data of 5 data registers starting with D10 designated by source device S1 is moved to 5 data registers starting with D20 designated by destination device D1.

IBMV (Indirect Bit Move)

$\mathrm{S} 1+\mathrm{S} 2 \rightarrow \mathrm{D} 1+\mathrm{D} 2$
When input is on, the values contained in devices designated by S1 and S2 are added to determine the source of data. The 1-bit data so determined is moved to destination, which is determined by the sum of values contained in devices designated by D1 and D2.

Applicable CPU Modules

FC5A-C10R2/C/D	FC5A-C16R2/C/D	FC5A-C24R2/C/D	FC5A-D16RK1/RS1	FC5A-D32K3/S3	FC5A-D12K1E/S1E
X	X	X	X	X	X

Valid Devices

Device	Function	I	\mathbf{Q}	\mathbf{M}	\mathbf{R}	\mathbf{T}	\mathbf{C}	\mathbf{D}	Constant	Repeat
S1 (Source 1)	Base address to move from	X	X	X	X	-	-	X	0 or 1	1-99
S2 (Source 2)	Offset for S1	X	$0-65535$	-						
D1 (Destination 1)	Base address to move to	-	X	\mathbf{A}	X	-	-	X	-	$1-99$
D2 (Destination 2)	Offset for D1	X	$0-65535$	-						

For the valid device address range, see pages 6-1 and 6-2 (Basic Vol.).
internal relays M0 through M2557 can be designated as D1. Special internal relays cannot be designated as D1.
When T (timer) or C (counter) is used as S2 or D2, the timer/counter current value (TC or CC) is read out.
Make sure that the last source data determined by S1+S2 and the last destination data determined by D1+D2 are within the valid device range. If the derived source or destination device is out of the valid device range, a user program execution error will result, turning on special internal relay M8004 and ERR LED on the CPU module.
Either source device S2 or destination device D2 does not have to be designated. If S2 or D2 is not designated, the source or destination device is determined by S1 or D1 without offset.

Examples: IBMV

$$
\mathrm{M} 10+\mathrm{D} 10 \rightarrow \mathrm{Q} 30+\mathrm{C} 5
$$

Source device S1 and destination device D1 determine the type of device. Source device S2 and destination device D2 are the offset values to determine the source and destination devices.

If the value of data register D10 designated by source device S2 is 5, the source data is determined by adding the offset to internal relay M10 designated by source device S1.

vuNNMNNNNNNN 12th from Q30

As a result, when input 10 is on, the ON/OFF status of internal relay M15 is moved to output Q44.

10	SOTU				
10	S2	D1-	D2	REP	
	D10	5	D20	12	

$$
\mathrm{D} 10+5 \rightarrow \mathrm{D} 20+12
$$

Since source device S1 is a data register and the value of source device S2 is 5, the source data is bit 5 of data register D10 designated by source device S1.
Since destination device D1 is a data register and the value of source device D2 is 12 , the destination is bit 12 of data register D20 designated by destination device D1.
As a result, when input 10 is on, the ON/OFF status of data register D10 bit 5 is moved to data register D20 bit 12.

Repeat Operation in the Indirect Bit Move Instructions

Repeat Bit Devices (Source and Destination)

If a repeat operation is designated for bit devices such as input, output, internal relay, or shift register, bit devices as many as the repeat cycles are moved.

$$
\begin{aligned}
& \mathrm{M} 10+5 \rightarrow \mathrm{Q} 30+9 \\
& \text { Repeat }=3
\end{aligned}
$$

Since source device S1 is internal relay M10 and the value of source device S 2 is 5 , the source data is 3 internal relays starting with M15.
Since destination device D1 is output Q30 and the value of destination device D2 is 9, the destination is 3 outputs starting with Q41.
As a result, when input I1 is on, the ON/OFF statuses of internal relays M15 through M17 are moved to outputs Q41 through Q43.

Repeat Word Devices (Source and Destination)

If a repeat operation is designated for word devices such as data register, bit statuses as many as the repeat cycles in the designated data register are moved.

SOTU	IBMV	S1 R	S2	D1 R	D2	REP
		D10	5	D20	12	3

$\mathrm{D} 10+5 \rightarrow \mathrm{D} 20+12$
Repeat $=3$

Since source device S1 is data register D10 and the value of source device $S 2$ is 5 , the source data is 3 bits starting with bit 5 of data register D10.

Since destination device D1 is data register D20 and the value of destination device D2 is 12 , the destination is 3 bits starting with bit 12 of data register D20.
As a result, when input 12 is on, the ON/OFF statuses of data register D10 bits 5 through 7 are moved to data register D20 bits 12 through 14.

IBMVN (Indirect Bit Move Not)

$$
\mathrm{S} 1+\mathrm{S} 2 \mathrm{NOT} \rightarrow \mathrm{D} 1+\mathrm{D} 2
$$

When input is on, the values contained in devices designated by S1 and S2 are added to determine the source of data. The 1-bit data so determined is inverted and moved to destination, which is determined by the sum of values contained in devices designated by D1 and D2.

Applicable CPU Modules

FC5A-C10R2/C/D	FC5A-C16R2/C/D	FC5A-C24R2/C/D	FC5A-D16RK1/RS1	FC5A-D32K3/S3	FC5A-D12K1E/S1E
X	X	X	X	X	X

Valid Devices

Device	Function	I	\mathbf{Q}	\mathbf{M}	\mathbf{R}	\mathbf{T}	C	D	Constant	Repeat
S1 (Source 1)	Base address to move from	X	X	X	X	-	-	X	0 or 1	$1-99$
S2 (Source 2)	Offset for S1	X	$0-65535$	-						
D1 (Destination 1)	Base address to move to	-	X	\mathbf{A}	X	-	-	X	-	$1-99$
D2 (Destination 2)	Offset for D1	X	$0-65535$	-						

For the valid device address range, see pages 6-1 and 6-2 (Basic Vol.).
A Internal relays M0 through M2557 can be designated as D1. Special internal relays cannot be designated as D1.
When T (timer) or C (counter) is used as S2 or D2, the timer/counter current (TC or CC) value is read out.
Make sure that the last source data determined by S1+S2 and the last destination data determined by D1+D2 are within the valid device range. If the derived source or destination device is out of the valid device range, a user program execution error will result, turning on special internal relay M8004 and ERR LED on the CPU module.
Either source device S2 or destination device D2 does not have to be designated. If S2 or D2 is not designated, the source or destination device is determined by S1 or D1 without offset.

Examples: IBMVN

$$
\mathrm{M} 20+\mathrm{D} 10 \mathrm{NOT} \rightarrow \mathrm{Q} 10+\mathrm{C} 5
$$

Source device S1 and destination device D1 determine the type of device. Source device S2 and destination device D2 are the offset values to determine the source and destination devices.

If the value of data register D10 designated by source device $S 2$ is 8 , the source data is determined by adding the offset to internal relay M20 designated by source device S1.

If the current value of counter C5 designated by destination device D2 is 10 , the destination is determined by adding the offset to output Q10 designated by destination device D1.

NNNNNNNNN 10th from Q10

As a result, when input 10 is on, the ON/OFF status of internal relay M30 is inverted and moved to output Q22.

NSET (N Data Set)

S1, S2, S3, ... , Sn \rightarrow D1, D2, D3, ... , Dn
When input is on, N blocks of 16 - or 32 -bit data in devices designated by $\mathrm{S} 1, \mathrm{~S} 2, \mathrm{~S} 3, \ldots$, Sn are moved to N blocks of destinations, starting with device designated by D1.

This instruction is available on upgraded CPU modules with system program version 200 or higher.

Applicable CPU Modules

FC5A-C10R2/C/D	FC5A-C16R2/C/D	FC5A-C24R2/C/D	FC5A-D16RK1/RS1	FC5A-D32K3/S3	FC5A-D12K1E/S1E
X	X	X	X	X	X

Valid Devices

Device	Function	I	\mathbf{Q}	\mathbf{M}	\mathbf{R}	\mathbf{T}	\mathbf{C}	D	Constant	Repeat
S1 (Source 1)	First device address to move	X	-							
D1 (Destination 1)	First device address to move to	-	X	\mathbf{A}	X	X	X	X	-	-

For the valid device address range, see pages 6-1 and 6-2 (Basic Vol.).
(Special internal relays cannot be designated as D1.
When T (timer) or C (counter) is used as S1, the timer/counter current value (TC or CC) is read out. When T (timer) or C (counter) is used as D1, the data is written in as a preset value (TP or CP).
When F (float) data type is selected, only data register and constant can be designated as S1, and only data register can be designated as D1.
When F (float) data type is selected and S 1 does not comply with the normal floating-point format, a user program execution error will result, turning on special internal relay M8004 and ERR LED on the CPU module.
Make sure that the last destination data determined by D1+N-1 (word or integer data type) or D1+2N-2 (double-word, long, or float data type) is within the valid device range. If the derived destination device is out of the valid device range, a user program execution error will result, turning on special internal relay M8004 and ERROR LED on the CPU module.

Valid Data Types

W (word)	X
I (integer)	X
\mathbf{D} (double word)	X
L (long)	X
F (float)	X

When a bit device such as I (input), Q (output), M (internal relay), or R (shift register) is designated as the source or destination, 16 points (word or integer data type) or 32 points (double-word or long data type) are used.
When a word device such as T (timer), C (counter), or D (data register) is designated as the source or destination, 1 point (word or integer data type) or 2 points (double-word, long, or float data type) are used.

Example: NSET(F)

Five constants $0.51,2.34,7.89,3.33$, and $10.0 \rightarrow$ D20 through D29
When input 10 is turned on, 5 constants designated by source devices S1 through S5 are moved to 10 data registers starting with D20 designated by destination device D1.

NRS (N Data Repeat Set)

S1 \rightarrow D1, D2, D3, ... , Dn-1
When input is on, 16- or 32-bit data designated by S 1 is set to N blocks of destinations, starting with device designated by D1.

This instruction is available on upgraded CPU modules with system program version 200 or higher.

Applicable CPU Modules

FC5A-C10R2/C/D	FC5A-C16R2/C/D	FC5A-C24R2/C/D	FC5A-D16RK1/RS1	FC5A-D32K3/S3	FC5A-D12K1E/S1E
X	X	X	X	X	X

Valid Devices

Device	Function	I	Q	\mathbf{M}	\mathbf{R}	T	C	D	Constant	Repeat
N-W (N blocks)	Quantity of blocks to move	X	-							
S1 (Source 1)	First device address to move	X								
D1 (Destination 1)	First device address to move to	-	X	\mathbf{A}	X	X	X	X	-	-

For the valid device address range, see pages 6-1 and 6-2 (Basic Vol.).
For the N-W, 1 word (16 bits) is always used without regard to the data type.
Special internal relays cannot be designated as D1.
When T (timer) or C (counter) is used as N-W or S1, the timer/counter current value (TC or CC) is read out. When T (timer) or C (counter) is used as D1, the data is written in as a preset value (TP or CP).

When F (float) data type is selected, only data register and constant can be designated as S1, and only data register can be designated as D1.

When F (float) data type is selected and S1 does not comply with the normal floating-point format, a user program execution error will result, turning on special internal relay M8004 and ERR LED on the CPU module.

Make sure that the last destination data determined by D1+N-1 (word or integer data type) or D1+2N-2 (double-word, long, or float data type) is within the valid device range. If the derived destination device is out of the valid device range, a user program execution error will result, turning on special internal relay M8004 and ERROR LED on the CPU module.

Valid Data Types

W (word)	X
I (integer)	X
\mathbf{D} (double word)	X
\mathbf{L} (long)	X
F (float)	X

When a bit device such as I (input), Q (output), M (internal relay), or R (shift register) is designated as the source or destination, 16 points (word or integer data type) or 32 points (double-word or long data type) are used.
When a word device such as T (timer), C (counter), or D (data register) is designated as the source or destination, 1 point (word or integer data type) or 2 points (double-word, long, or float data type) are used.

Example: NRS(F)

XCHG (Exchange)

Word data type:	$\mathrm{D} 1 \leftrightarrow \mathrm{D} 2$
Double-word data type:	$\mathrm{D} 1 \cdot \mathrm{D} 1+1 \rightarrow \mathrm{D} 2, \mathrm{D} 2+1$

When input is on, the 16- or 32-bit data in devices designated by D1 and D2 are exchanged with each other.
This instruction is available on upgraded CPU modules with system program version 210 or higher.

Applicable CPU Modules

FC5A-C10R2/C/D	FC5A-C16R2/C/D	FC5A-C24R2/C/D	FC5A-D16RK1/RS1	FC5A-D32K3/S3	FC5A-D12K1E/S1E
X	X	X	X	X	X

Valid Devices

Device	Function	I	Q	M	R	T	C	D	Constant	Repeat
D1 (Destination 1)	First device address to exchange	-	X	s	X	-	-	X	-	-
D2 (Destination 2)	First device address to exchange	-	X	(X	-	-	X	-	-

For the valid device address range, see pages 6-1 and 6-2 (Basic Vol.).
(Internal relays M0 through M2557 can be designated as D1 or D2. Special internal relays cannot be designated as D1 or D2.

Valid Data Types

W (word)	X
I (integer)	-
D (double word)	X
L (long)	-
F (float)	-

When a bit device such as Q (output), M (internal relay), or R (shift register) is designated as the destination, 16 points (word data type) or 32 points (double-word data type) are used.

When a word device such as D (data register) is designated as the destination, 1 point (word data type) or 2 points (double-word data type) are used.

Examples: XCHG

- Data Type: Word

$$
\mathrm{D} 21 \leftrightarrow \mathrm{D} 24
$$

When input 10 is turned on, data of data registers D20 and D24 designated by devices D1 and D2 are exchanged with each other.

- Data Type: Double Word

D31•D32 \leftrightarrow D37•D38
When input 11 is turned on, data of data registers D31•D32 and D37•D38 designated by devices D1 and D2 are exchanged with each other.

TCCST (Timer/Counter Current Value Store)

S1 \rightarrow D1
When input is on, 16- or 32-bit data designated by S 1 is read out and stored to the current value of device designated by D1.
This instruction is available on upgraded CPU modules with system program version 200 or higher.

Applicable CPU Modules

FC5A-C10R2/C/D	FC5A-C16R2/C/D	FC5A-C24R2/C/D	FC5A-D16RK1/RS1			FC5A-D32K3/S3				FC5A-D12K1E/S1E	
X	X	X	X			X				X	
Valid Devices											
Device	Function		1	Q	M	R	T	C	D	Constant	Repeat
S1 (Source 1)	First device address to move		X	X	X	X	X	X	X	X	1-99
D1 (Destination 1)	First device address to move to		-	-	-	-	X	X	-	-	1-99

For the valid device address range, see pages 6-1 and 6-2 (Basic Vol.).
When T (timer) or C (counter) is used as S1, the timer/counter current value (TC or CC) is read out. T (timer) or C (counter) is used as D1, and the data is written in as a current value (TP or CP).
Since the TCCST instruction is executed in each scan while input is on, a pulse input from a SOTU or SOTD instruction should be used as required.

Valid Data Types

W (word)	X
I (integer)	-
D (double word)	X
L (long)	-
F (float)	-

When a bit device such as I (input), Q (output), M (internal relay), or R (shift register) is designated as the source, 16 points (word data type) or 32 points (double-word data type) are used. When repeat is designated for a bit device, the quantity of device bits increases in 16- or 32-point increments.
When a word device such as T (timer), C (counter), or D (data register) is designated as the source or destination, 1 point (word data type) or 2 points (double-word data type) are used. When repeat is designated for a word device, the quantity of device words increases in 1- or 2-point increments.

Example: TCCST

When input I2 is turned on, 99998 is written to the current value of counter C23.

Ladder Diagram

Timing Chart

4: DAtA COMPARISON Instructions

Introduction

Data can be compared using data comparison instructions, such as equal to, unequal to, less than, greater than, less than or equal to, and greater than or equal to. When the comparison result is true, an output or internal relay is turned on. The repeat operation can also be used to compare more than one set of data.

New logical OR operation option is added to the CMP instructions when the repeat operation is enabled. Repeated comparison results of CMP instructions can be selected from AND or OR operation, and the result is outputted to an output or internal relay. This option is available on upgraded CPU modules with system program version 200 or higher.

Three values can also be compared using the ICMP>= instruction.
Load comparison instructions have been added. The comparison result is loaded so that the following instructions can be initiated. These instructions are available on upgraded CPU modules with system program version 200 or higher.

Since the data comparison instructions are executed in each scan while input is on, a pulse input from a SOTU or SOTD instruction should be used as required.

CMP= (Compare Equal To)

CMP<> (Compare Unequal To)

CMP< (Compare Less Than)

CMP> (Compare Greater Than)

CMP<= (Compare Less Than or Equal To)

$\begin{array}{ll}\text { Data type } \mathrm{W} \text { or } \mathrm{I}: & \mathrm{S} 1=\mathrm{S} 2 \rightarrow \mathrm{D} 1 \text { on } \\ \text { Data type } \mathrm{D}, \mathrm{L} \text {, or } \mathrm{F}: & \mathrm{S} 1 \cdot \mathrm{~S} 1+1=\mathrm{S} 2 \cdot \mathrm{~S} 2+1 \rightarrow \mathrm{D} 1 \text { on }\end{array}$
When input is on, 16- or 32-bit data designated by source devices S1 and S2 are compared. When S1 data is equal to S2 data, destination device D1 is turned on. When the condition is not met, D1 is turned off.
$\begin{array}{ll}\text { Data type W or I: } & \mathrm{S} 1 \neq \mathrm{S} 2 \rightarrow \mathrm{D} 1 \text { on } \\ \text { Data type } \mathrm{D}, \mathrm{L} \text {, or } \mathrm{F}: & \mathrm{S} 1 \cdot \mathrm{~S} 1+1 \neq \mathrm{S} 2 \cdot \mathrm{~S} 2+1 \rightarrow \mathrm{D} 1 \text { on }\end{array}$
When input is on, 16- or 32-bit data designated by source devices $S 1$ and S2 are compared. When S1 data is not equal to S2 data, destination device D1 is turned on. When the condition is not met, D1 is turned off.

Data type W or I: $\quad \mathrm{S} 1<\mathrm{S} 2 \rightarrow \mathrm{D} 1$ on
Data type D, L, or F: $\mathrm{S} 1 \cdot \mathrm{~S} 1+1<\mathrm{S} 2 \cdot \mathrm{~S} 2+1 \rightarrow \mathrm{D} 1$ on
When input is on, 16 - or 32-bit data designated by source devices S1 and S2 are compared. When S1 data is less than S2 data, destination device D1 is turned on. When the condition is not met, D1 is turned off.

> Data type W or I: $\quad \mathrm{S} 1>\mathrm{S} 2 \rightarrow \mathrm{D} 1$ on
> Data type D, L, or $\mathrm{F}: \quad \mathrm{S} 1 \cdot \mathrm{~S} 1+1>\mathrm{S} 2 \cdot \mathrm{~S} 2+1 \rightarrow \mathrm{D} 1$ on
> When input is on, 16- or 32 -bit data designated by source devices S1 and S2 are compared. When S1 data is greater than S2 data, destination device D1 is turned on. When the condition is not met, D1 is turned off.

Data type W or I: $\quad \mathrm{S} 1 \leq \mathrm{S} 2 \rightarrow \mathrm{D} 1$ on
Data type D, L, or F: $\mathrm{S} 1 \cdot \mathrm{~S} 1+1 \leq \mathrm{S} 2 \cdot \mathrm{~S} 2+1 \rightarrow \mathrm{D} 1$ on
When input is on, 16- or 32-bit data designated by source devices S1 and S2 are compared. When S1 data is less than or equal to S2 data, destination device D1 is turned on. When the condition is not met, D1 is turned off.

CMP>= (Compare Greater Than or Equal To)

Data type W or I: $\quad \mathrm{S} 1 \geq \mathrm{S} 2 \rightarrow \mathrm{D} 1$ on
Data type D, L, or F: $\mathrm{S} 1 \cdot \mathrm{~S} 1+1 \geq \mathrm{S} 2 \cdot \mathrm{~S} 2+1 \rightarrow \mathrm{D} 1$ on
When input is on, 16- or 32-bit data designated by source devices S1 and S2 are compared. When S1 data is greater than or equal to S2 data, destination device D1 is turned on. When the condition is not met, D1 is turned off.

Applicable CPU Modules

FC5A-C10R2/C/D	FC5A-C16R2/C/D	FC5A-C24R2/C/D	FC5A-D16RK1/RS1	FC5A-D32K3/S3	FC5A-D12K1E/S1E
X	X	X	X	X	X

Valid Devices

Device	Function	I	\mathbf{Q}	\mathbf{M}	\mathbf{R}	\mathbf{T}	\mathbf{C}	\mathbf{D}	Constant	Repeat
Repeat Result	Logical AND or OR operation	-	-	-	-	-	-	-	-	
S1 (Source 1)	Data to compare	X	$1-99$							
S2 (Source 2)	Data to compare	X	$1-99$							
D1 (Destination 1)	Comparison output	-	X	\mathbf{A}	-	-	-	-	-	$1-99$

For the valid device address range, see pages 6-1 and 6-2 (Basic Vol.).
When only S1 and/or S2 is repeated, the logical operation type can be selected from AND or OR. The logical operation OR is available on upgraded CPU modules with system program version 200 or higher.
A Internal relays M0 through M2557 can be designated as D1. Special internal relays cannot be designated as D1.
When T (timer) or C (counter) is used as S1 or S2, the timer/counter current value (TC or CC) is read out.
When F (float) data type is selected, only data register and constant can be designated as S1 and S2.
When F (float) data type is selected and S1 or S2 does not comply with the normal floating-point format, a user program execution error will result, turning on special internal relay M8004 and ERR LED on the CPU module.

Valid Data Types

W (word)	X
I (integer)	X
\mathbf{D} (double word)	X
\mathbf{L} (long)	X
F (float)	X

When a bit device such as I (input), Q (output), M (internal relay), or R (shift register) is designated as the source, 16 points (word or integer data type) or 32 points (double-word or long data type) are used. When repeat is designated for a bit device, the quantity of device bits increases in 16- or 32-point increments.
When a word device such as T (timer), C (counter), or D (data register) is designated as the source, 1 point (word or integer data type) or 2 points (double-word, long, or float data type) are used. When repeat is designated for a word device, the quantity of device words increases in 1- or 2-point increments.
When an output or internal relay is designated as the destination, only 1 point is used regardless of the selected data type. When repeat is designated for the destination, outputs or internal relays as many as the repeat cycles are used.

Special Internal Relays M8150, M8151, and M8152 in CMP=

Three special internal relays are available to indicate the comparison result of the CMP= instruction. Depending on the result, one of the three special internal relays turns on.

When S1 > S2, M8150 (greater than) turns on.
When S1 = S2, M8151 (equal to) turns on.
When S1 < S2, M8152 (less than) turns on.

S2 Value	M8150	M8151	M8152	D1 Status
(1) S1 > S2	ON	OFF	OFF	OFF
(2) S1 = S2	OFF	ON	OFF	ON
(3) S1 < S2	OFF	OFF	ON	OFF

When repeat is designated, the comparison result of the last repeat cycle turns on one of the three special internal relays.

When more than one CMP= or ICMP>= instruction is used, M8150, M8151, or M8152 indicates the result of the instruction that was executed last.

Examples: CMP>=

The following examples are described using the CMP \geq instruction. Data comparison operation for all other data comparison instructions is the same for the CMP \geq instruction.

- Data Type: Word

- Data Type: Integer

- Data Type: Double Word

- Data Type: Long

$|$| $\mathrm{CMP}>=(\mathrm{L})$ | $\mathrm{S} 1-$ | $\mathrm{S} 2-$ | $\mathrm{D} 1-$ | REP |
| :--- | :--- | :--- | :--- | :--- |
| | D 70 | D 80 | Q 3 | |

- Data Type: Float
$\left|11-\begin{array}{lllll|}\hline \mathrm{CMP}>=(\mathrm{F}) & \mathrm{S} 1- & \mathrm{S} 2- & \mathrm{D} 1- & \mathrm{REP} \\ & \mathrm{D} 90 & \mathrm{D} 95 & \mathrm{Q} 4 & \end{array}\right|$

S1		S2		D1
D90•D91	12.4	D95•D96	12.345	Q4 turned on
D90.D91	-1	D95.D96	-0.99	Q4 turned off

Repeat Operation in the Data Comparison Instructions

The following examples are described using the CMP \geq instruction of the word and double word data types. Repeat operation for all other data comparison instructions and other data types is the same as the following examples.
New logical OR operation option is added to the CMP instructions when the repeat operation is enabled. Repeated comparison results of CMP instructions can be selected from AND or OR operation, and the result is outputted to an output or internal relay. This option is available on upgraded CPU modules with system program version 200 or higher.

Repeat One Source Device

When only S1 (source) is designated to repeat, source devices (as many as the repeat cycles, starting with the device designated by S1) are compared with the device designated by S2. The comparison results are ANDed or ORed and set to the destination device designated by D1.

- Data Type: Word (Repeat Logical Operation AND)

- Data Type: Word (Repeat Logical Operation OR)

- Data Type: Double Word (Repeat Logical Operation AND)

10	S1	S2-	D1-	REP
CMP>=(D)	S			
AND	D20	D30	M50	3

Repeat Two Source Devices

When S1 (source) and S2 (source) are designated to repeat, source devices (as many as the repeat cycles, starting with the devices designated by S1 and S2) are compared with each other. The comparison results are ANDed or ORed and set to the destination device designated by D1.

- Data Type: Word (Repeat Logical Operation AND)

- Data Type: Word (Repeat Logical Operation OR)

- Data Type: Double Word (Repeat Logical Operation AND)

10	CMP>=(D)	S1 R	S2 R	D1-	REP
AND	D20	D30	M50	3	

S1 (Repeat $=3)$	S2 (Repeat $=3$)	D1 (Repeat $=0$)
D20.D21	D30.D31	
D22.D23	D32-D33 \longrightarrow AND	$\rightarrow \mathrm{M} 50$
D24.D25	D34.D35	

Repeat Source and Destination Devices

When S1, S2 (source), and D1 (destination) are designated to repeat, source devices (as many as the repeat cycles, starting with the devices designated by S1 and S2) are compared with each other. The comparison results are set to destination devices (as many as the repeat cycles, starting with the device designated by D1).

- Data Type: Word

- Data Type: Double Word

$|$| 10 | CMP>=(D) | S1 R | S2 R | D1 R |
| :--- | :--- | :--- | :--- | :---: |
| | REP | | | |
| | D20 | D30 | M50 | 3 |

S1 $($ Repeat $=3)$	S2 (Repeat $=3$)	D1 (Repeat = 3)
D20.D21	D30.D31	$\rightarrow \mathrm{M} 50$
D22-D23	D32.D33	$\rightarrow \mathrm{M} 51$
D24.D25	D34.D35	\longrightarrow M52

Comparison Output Status

The comparison output is usually maintained while the input to the data comparison instruction is off. If the comparison output is on, the on status is maintained when the input is turned off as demonstrated by this program.

This program turns the output off when the input is off.

ICMP>= (Interval Compare Greater Than or Equal To)

Data type W or I: $\quad \mathrm{S} 1 \geq \mathrm{S} 2 \geq \mathrm{S} 3 \rightarrow \mathrm{D} 1$ on
Data type D, L, F: $\mathrm{S} 1 \cdot \mathrm{~S} 1+1 \geq \mathrm{S} 2 \cdot \mathrm{~S} 2+1 \geq \mathrm{S} 3 \cdot \mathrm{~S} 3+1 \rightarrow \mathrm{D} 1$ on
When input is on, the 16 - or 32-bit data designated by $\mathrm{S} 1, \mathrm{~S} 2$, and S3 are compared. When the condition is met, destination device D1 is turned on. When the condition is not met, D1 is turned off.

Applicable CPU Modules

FC5A-C10R2/C/D	FC5A-C16R2/C/D	FC5A-C24R2/C/D	FC5A-D16RK1/RS1	FC5A-D32K3/S3	FC5A-D12K1E/S1E
X	X	X	X	X	X

Valid Devices

Device	Function	I	\mathbf{Q}	\mathbf{M}	\mathbf{R}	\mathbf{T}	\mathbf{C}	\mathbf{D}	Constant	Repeat
S1 (Source 1)	Data to compare	X								
S2 (Source 2)	Data to compare	X								
S3 (Source 3)	Data to compare	X								
D1 (Destination 1)	Comparison output	-	X	\mathbf{A}	-	-	-	-	-	

For the valid device address range, see pages 6-1 and 6-2 (Basic Vol.).
A Internal relays M0 through M2557 can be designated as D1. Special internal relays cannot be designated as D1.
When T (timer) or C (counter) is used as S1, S2, or S3, the timer/counter current value (TC or CC) is read out.
When F (float) data type is selected, only data register and constant can be designated as $\mathrm{S} 1, \mathrm{~S} 2$, and S 3 .
When F (float) data type is selected and $\mathrm{S} 1, \mathrm{~S} 2$, or S 3 does not comply with the normal floating-point format, a user program execution error will result, turning on special internal relay M8004 and ERR LED on the CPU module.
When the data of S 1 is smaller than that of $\mathrm{S} 3(\mathrm{~S} 1<\mathrm{S} 3)$, a user program execution error will result, turning on special internal relay M8004 and ERR LED on the CPU module.

Valid Data Types

W (word)	X
I (integer)	X
\mathbf{D} (double word)	X
\mathbf{L} (long)	X
F (float)	X

When a bit device such as I (input), Q (output), M (internal relay), or R (shift register) is designated as the source, 16 points (word or integer data type) or 32 points (double-word or long data type) are used.
When a word device such as T (timer), C (counter), or D (data register) is designated as the source, 1 point (word or integer data type) or 2 points (double-word, long, or float data type) are used.

The destination uses only one output or internal relay regardless of the selected data type.

Special Internal Relays M8150, M8151, and M8152 in ICMP>=

Three special internal relays are available to indicate the comparison result of the ICMP>= instruction. Depending on the result, one of the three special internal relays turns on. S1 must always be greater than or equal to S3 (S1 \geq S3).

When S2 > S1, M8150 turns on.
When S2 < S3, M8151 turns on.
When S1 > S2 > S3, M8152 turns on.

S2 Value	M8150	M8151	M8152	D1 Status
(1) S2 < S3	OFF	ON	OFF	OFF
(2) S2 = S3	OFF	OFF	OFF	ON
(3) S3 < S2 < S1	OFF	OFF	ON	ON
(4) S2 = S1	OFF	OFF	OFF	ON
(5) S2 > S1	ON	OFF	OFF	OFF

When more than one ICMP>= or CMP= instruction is used, M8150, M8151, or M8152 indicates the result of the instruction that was executed last.

Example: ICMP>=

$\mathrm{D} 10 \geq \mathrm{D} 11 \geq \mathrm{D} 12 \rightarrow \mathrm{Q} 1$ goes on

When input 10 is turned on, data of data registers D10, D11, and D12 designated by source devices S1, S2, and S3 are compared. When the condition is met, internal relay Q1 designated by destination device D1 is turned on. When the condition is not met, Q1 is turned off.

LC= (Load Compare Equal To)

Data type W or I: \quad S1 = S2
Data type D, L, or F: $\quad \mathrm{S} 1 \cdot \mathrm{~S} 1+1=\mathrm{S} 2 \cdot \mathrm{~S} 2+1$
This instruction constantly compares 16 - or 32 - bit data designated by S 1 and S 2 . When S1 data is equal to $S 2$ data, the output to the following instructions is turned on. When the condition is not met, the output is turned off.

LC<> (Load Compare Unequal To)

Data type W or I: $\quad \mathrm{S} 1 \neq \mathrm{S} 2$
Data type D, L, or F: $\quad \mathrm{S} 1 \cdot \mathrm{~S} 1+1 \neq \mathrm{S} 2 \cdot \mathrm{~S} 2+1$
This instruction constantly compares 16 - or 32- bit data designated by S1 and S2. When S1 data is not equal to S 2 data, the output to the following instructions is turned on. When the condition is not met, the output is turned off.

LC< (Load Compare Less Than)

Data type W or I: $\quad \mathrm{S} 1<\mathrm{S} 2$
Data type D, L, or F: $\quad \mathrm{S} 1 \cdot \mathrm{~S} 1+1<\mathrm{S} 2 \cdot \mathrm{~S} 2+1$
This instruction constantly compares 16 - or 32-bit data designated by S1 and S2. When S1 data is less than S 2 data, the output to the following instructions is turned on. When the condition is not met, the output is turned off.

LC> (Load Compare Greater Than)

Data type W or I: \quad S1 > S2
Data type D, L, or F: $\quad \mathrm{S} 1 \cdot \mathrm{~S} 1+1>\mathrm{S} 2 \cdot \mathrm{~S} 2+1$
This instruction constantly compares 16 - or 32- bit data designated by S 1 and S 2 . When S1 data is greater than S2 data, the output to the following instructions is turned on. When the condition is not met, the output is turned off.

LC<= (Load Compare Less Than or Equal To)

Data type W or I: $\quad \mathrm{S} 1 \leq \mathrm{S} 2$
Data type D, L, or F: $\quad \mathrm{S} 1 \cdot \mathrm{~S} 1+1 \leq \mathrm{S} 2 \cdot \mathrm{~S} 2+1$
This instruction constantly compares 16 - or 32-bit data designated by S 1 and S 2 . When S 1 data is less than or equal to S2 data, the output to the following instructions is turned on. When the condition is not met, the output is turned off.

LC>= (Load Compare Greater Than or Equal To)

This instruction constantly compares 16 - or 32 - bit data designated by S 1 and S 2 . When S 1 data is greater than or equal to S 2 data, the output to the following instructions is turned on. When the condition is not met, the output is turned off.

Applicable CPU Modules

FC5A-C10R2/C/D	FC5A-C16R2/C/D	FC5A-C24R2/C/D	FC5A-D16RK1/RS1	FC5A-D32K3/S3	FC5A-D12K1E/S1E
X	X	X	X	X	X

Valid Devices

| Device | Function | I | \mathbf{Q} | \mathbf{M} | \mathbf{R} | \mathbf{T} | \mathbf{C} | \mathbf{D} | Constant | Repeat | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| S1 (Source 1) | Data to compare | X | | - |
| S2 (Source 2) | Data to compare | X | | |

For the valid device address range, see pages 6-1 and 6-2 (Basic Vol.).
When T (timer) or C (counter) is used, the timer/counter current value (TC or CC) is read out.
When F (float) data type is selected, only data register and constant can be designated.
When F (float) data type is selected and S1 or S2 does not comply with the normal floating-point format, a user program execution error will result, turning on special internal relay M8004 and ERR LED on the CPU module. The output to the following instructions is turned off.

Valid Data Types

W (word)	X
I (integer)	X
\mathbf{D} (double word)	X
\mathbf{L} (long)	X
F (float)	X

Examples: LC

Ladder Diagram 1

When a bit device such as I (input), Q (output), M (internal relay), or R (shift register) is designated, 16 points (word or integer data type) or 32 points (double-word or long data type) are used.
When a word device such as T (timer), C (counter), or D (data register) is designated, 1 point (word or integer data type) or 2 points (double-word, long, or float data type) are used.

Program List

Instruction	Data
LOD	10
LOD	11
CNTD	C2
	100000
LC=(D)	C2
	99997
OUT	Q0
LC>=(D)	C2
	99996
OUT	Q1

Timing Chart

Ladder Diagram 2

Timing Chart

Output Q0 is on when counter C2 current value is 99997.
Output Q1 is turned on when counter C2 current value reaches 99996 and remains on until counter C2 is reset.

Program List

Instruction	Data
LOD	I 2
SOTU	
ADD(I)	D10
	1
LC $<=(\mathrm{I})$	D10
	D10
LC $<=(\mathrm{I})$	-2
ORLOD	D10
OUT	Q2
LC<=(I)	-3
LC<=(I)	D10
D10	5
ANDLOD	Q3
OUT	Q3

Output Q2 is on when data register D10 is less than or equal to -2 and greater than or equal to 3.

Output Q3 is on while data register D10 is between -3 and 5 .

5: Binary Arithmetic Instructions

Introduction

The binary arithmetic instructions make it possible for the user to program computations using addition, subtraction, multiplication, and division. For addition and subtraction devices, internal relay M8003 is used to carry or to borrow.

The ROOT instruction can be used to calculate the square root of the value stored in one or two data registers.
INC (increment), DEC (decrement), SUM (sum), and RNDM (random) instructions are added to upgraded CPU modules with system program version 210 or higher.

ADD (Addition)

$\begin{array}{ll}\text { Data type W or I: } & \mathrm{S} 1+\mathrm{S} 2 \rightarrow \mathrm{D} 1, \mathrm{CY} \\ \text { Data type } \mathrm{D}, \mathrm{L} \text {, or F: } & \mathrm{S} 1 \cdot \mathrm{~S} 1+1+\mathrm{S} 2 \cdot \mathrm{~S} 2+1 \rightarrow \mathrm{D} 1 \cdot \mathrm{D} 1+1, \mathrm{CY}\end{array}$
When input is on, 16- or 32-bit data designated by source devices S1 and S2 are added. The result is set to destination device D1 and carry (M8003).

SUB (Subtraction)

Data type W or $\mathrm{I}:$	$\mathrm{S} 1-\mathrm{S} 2 \rightarrow \mathrm{D} 1, \mathrm{BW}$
Data type D, L, or $\mathrm{F}:$	$\mathrm{S} 1 \cdot \mathrm{~S} 1+1-\mathrm{S} 2 \cdot \mathrm{~S} 2+1 \rightarrow \mathrm{D} 1 \cdot \mathrm{D} 1+1, \mathrm{BW}$

When input is on, 16- or 32-bit data designated by source device S2 is subtracted from 16- or 32-bit data designated by source device S1. The result is set to destination device D1 and borrow (M8003).

MUL (Multiplication)

$$
\begin{array}{ll}
\text { Data type } \mathrm{W} \text { or } \mathrm{I}: & \mathrm{S} 1 \times \mathrm{S} 2 \rightarrow \mathrm{D} 1 \cdot \mathrm{D} 1+1 \\
\text { Data type } \mathrm{D}, \mathrm{~L} \text {, or } \mathrm{F}: & \mathrm{S} 1 \cdot \mathrm{~S} 1+1 \times \mathrm{S} 2 \cdot \mathrm{~S} 2+1 \rightarrow \mathrm{D} 1 \cdot \mathrm{D} 1+1
\end{array}
$$

When input is on, 16 - or 32 -bit data designated by source device $S 1$ is multiplied by 16- or 32-bit data designated by source device S2. The result is set to destination device D1.

When the result exceeds the valid range for data types D or L, the ERR LED and special internal relay M8004 (user program execution error) are turned on.

DIV (Division)

Data type F:

$$
\mathrm{S} 1 \cdot \mathrm{~S} 1+1 \div \mathrm{S} 2 \cdot \mathrm{~S} 2+1 \rightarrow \quad \mathrm{D} 1 \cdot \mathrm{D} 1+1 \text { (quotient) }
$$

When input is on, 16 - or 32 -bit data designated by source device $S 1$ is divided by 16 - or 32 -bit data designated by source device $S 2$. The quotient is set to 16 - or 32-bit destination device D1, and the remainder is set to the next 16- or 32-bit data. Data type F does not generate a remainder.
When S2 is 0 (dividing by 0), the ERR LED and special internal relay M8004 (user program execution error) are turned on.
A user program execution error also occurs in the following division operations.

$$
\begin{array}{ll}
\text { Data type I: } & -32768 \div(-1) \\
\text { Data type L: } & -2147483648 \div(-1)
\end{array}
$$

Applicable CPU Modules

FC5A-C10R2/C/D	FC5A-C16R2/C/D	FC5A-C24R2/C/D	FC5A-D16RK1/RS1	FC5A-D32K3/S3	FC5A-D12K1E/S1E
X	X	X	X	X	X

Valid Devices

Device	Function	1	Q	M	R	T	C	D	Constant	Repeat
S1 (Source 1)	Data for calculation	X	X	X	X	X	X	X	X	1-99
S2 (Source 2)	Data for calculation	X	X	X	X	X	X	X	X	1-99
D1 (Destination 1)	Destination to store results	-	X	A	X	X	X	X	-	1-99

For the valid device address range, see pages 6-1 and 6-2 (Basic Vol.).
A Internal relays M0 through M2557 can be designated as D1. Special internal relays cannot be designated as D1.
When T (timer) or C (counter) is used as S1 or S2, the timer/counter current value (TC or CC) is read out. When T (timer) or C (counter) is used as D1, the data is written in as a preset value (TP or CP) which can be 0 through 65535.
When F (float) data type is selected, only data register and constant can be designated as S1 and S2.
When F (float) data type is selected and S1 or S2 does not comply with the normal floating-point format, a user program execution error will result, turning on special internal relay M8004 and ERR LED on the CPU module.
Since the binary arithmetic instructions are executed in each scan while input is on, a pulse input from a SOTU or SOTD instruction should be used as required.

Valid Data Types

W (word)	X
I (integer)	X
D (double word)	X
L (long)	X
F (float)	X

When a bit device such as I (input), Q (output), M (internal relay), or R (shift register) is designated as the source, 16 points (word or integer data type) or 32 points (double-word, long, or float data type) are used. When repeat is designated for a bit device, the quantity of device bits increases in 16 - or 32point increments.
When a word device such as T (timer), C (counter), or D (data register) is designated as the source, 1 point (word or integer data type) or 2 points (double-word, long, or float data type) are used. When repeat is designated for a word device, the quantity of device words increases in 1- or 2-point increments.

Using Carry or Borrow Signals

When the D1 (destination) data is out of the valid data range as a result of any binary arithmetic operation, a carry or borrow occurs, and special internal relay M8003 is turned on.

Data Type	Carry/borrow occurs when D1 is out of the range between
W (word)	0 and 65,535
I (integer)	$-32,768$ and 32,767
D (double word)	0 and $4,294,967,295$
L (long)	$-2,147,483,648$ and $2,147,483,647$
F (float)	-3.402823×10^{38} and $-1.175495 \times 10^{-38}$
	1.175495×10^{-38} and 3.402823×10^{38}

Examples: ADD

- Data Type: Word

This example demonstrates the use of a carry signal from special internal relay M8003 to set an alarm signal.

D2 $+500 \rightarrow$ D2

When a carry occurs, output Q0 is set as a warning indicator.
When the acknowledge pushbutton (input 11) is pressed, the warning indicator is reset.

- Data Type: Integer

10	SDD (I)	S1-	S2-	D1-
	D10	D20	D30	

$$
\mathrm{D} 10 \square-4+\mathrm{D} 20 \square-11 \longrightarrow \mathrm{D} 30 \square-15
$$

- Data Type: Double Word

D10•D11 $1957400 \rightarrow$ D20•D21 $4112600 \rightarrow$ D30•D31 6070000
- Data Type: Long

$|$| | | | | |
| :--- | :--- | :--- | :--- | :--- |
| 10 | ADD(L) | S1- | S2- | D1- |
| D10 | D20 | D30 | | |

- Data Type: Float

Example: SUB

- Data Type: Word

The following example demonstrates the use of special internal relay M8003 to process a borrow.

D12-7000 \rightarrow D12
To process borrowing so that the number of times a borrow occurs is subtracted from D13.
When a borrow occurs, D13 is decremented by one.

Examples: MUL

- Data Type: Word

- Data Type: Integer

- Data Type: Double Word

$\mathbf{H}_{11} \vdash$| $\mathrm{MUL}(\mathrm{D})$ | S1- | S2- | D1- | REP |
| :--- | :--- | :--- | :--- | :--- |
| | D10 | D20 | D30 | |

D10•D11 $100000 \rightarrow$ D20•D21 $\quad \rightarrow$ D30•D31 500000000
Note: In multiplication of double word data type, the lower 32-bit data of the result is set to destination device D1•D1+1.

- Data Type: Long

D10•D11 $-100000 \rightarrow$ D20•D21 $\rightarrow-5000 \rightarrow$ D30•D31 400000000

Note: In multiplication of long data type, the lower 32-bit data of the result is set to destination device D1•D1+1.

- Data Type: Float

MUL(F)	S1-	S2-	D1-	REP
	D10	D20	D30	

D10•D11 $4.554 \rightarrow$ D20•D21 $\rightarrow 1.414 \rightarrow$ D30•D31 $\quad \rightarrow .439356$

[^0]
Examples: DIV

- Data Type: Word

DIV(W)	S1-	S2 -	D1 -	REP
	D10	D20	D30	

D10 $50 \div$
20 \qquad \longrightarrow

D31 | Remainder |
| :---: |

When input 12 is on, data of D10 is divided by data of D20. The quotient is set to D30, and the remainder is set to D31.

Note: Since the destination uses two word devices in the division operation of word data type, data register D1999 cannot be used as destination device D1. When using a bit device such as internal relay for destination, 32 internal relays are required; so M 2521 or a larger number cannot be used as destination device D1.

- Data Type: Integer
$\left|\begin{array}{lllll|}\hline \operatorname{DIV}(I) & \text { S1- } & \text { S2- } & \text { D1- } & \text { REP } \\ & \text { D10 } & \text { D20 } & \text { D30 }\end{array}\right|$

Note: Since the destination uses two word devices in the division operation of integer data type, data register D1999 cannot be used as destination device D1. When using a bit device such as internal relay for destination, 32 internal relays are required; so M 2521 or a larger number cannot be used as destination device D1.

- Data Type: Double Word

Note: Since the destination uses four word devices in the division operation of double-word data type, data registers D1997 through D1999 cannot be used as destination device D1. When using a bit device such as internal relay for destination, 64 internal relays are required; so M2481 or a larger number cannot be used as destination device D1.

- Data Type: Long

Note: Since the destination uses four word devices in the division operation of long data type, data registers D1997 through D1999 cannot be used as destination device D1. When using a bit device such as internal relay for destination, 64 internal relays are required; so M2481 or a larger number cannot be used as destination device D1.

- Data Type: Float

Note: Since the destination uses two word devices in the division operation of float data type, data register D1999 cannot be used as destination device D1.

Repeat Operation in the ADD and SUB Instructions

Source devices S1 and S2 and destination device D1 can be designated to repeat individually or in combination. When destination device D1 is not designated to repeat, the final result is set to destination device D1. When repeat is designated, consecutive devices as many as the repeat cycles starting with the designated device are used. Since the repeat operation works similarly on the ADD (addition) and SUB (subtraction) instructions, the following examples are described using the ADD instruction.

Repeat One Source Device

- Data Type: Word and Integer

When only S1 (source) is designated to repeat, the final result is set to destination device D1.

S1 (Repeat = 3)		S2 (Repeat $=0$)				D1 $($ Repeat $=0)$	
D10	10	$+$	D20	25	\rightarrow	D30	(35)
D11	15	+	D20	25	\rightarrow	D30	(40)
D12	20	+	D20	25	\rightarrow	D30	45

- Data Type: Double Word, Long, and Float

When only S1 (source) is designated to repeat, the final result is set to destination device D1•D1+1.

	ADD(D)					S1 (Repeat = 3)	S2 (Repeat $=0$)			D1 $($ Repeat $=0)$
$\dagger_{11} 1 \text { SOTU }$		$\begin{aligned} & \text { S1 R } \\ & \text { D10 } \end{aligned}$	$\begin{aligned} & \mathrm{S} 2- \\ & \mathrm{D} 20 \end{aligned}$	$\begin{aligned} & \text { D1- } \\ & \text { D30 } \end{aligned}$	$\begin{gathered} \text { REP } \\ 3 \end{gathered}$		+	D20•D21	\square	(D30•D31)
						D12.D13	+	D20-D21	\longrightarrow	(D30.D31)
						D14.D15	+	D20.D21	\rightarrow	D30.D31

Repeat Destination Device Only

- Data Type: Word and Integer

When only D1 (destination) is designated to repeat, the same result is set to 3 devices starting with D1.

S1 $($ Repeat $=0)$		S2 $($ Repeat $=0)$				D1 (Repeat $=3$)	
D10	10	+	D20	25	\rightarrow	D30	35
D10	10	+	D20	25	\rightarrow	D31	35
D10	10	+	D20	25	\longrightarrow	D32	35

- Data Type: Double Word, Long, and Float

When only D1 (destination) is designated to repeat, the same result is set to 3 devices starting with D1•D1+1.

S1 (Repeat $=0$)		S2 (Repeat $=0$)		D1 (Repeat $=3$)
D10.D11	+	D20.D21		D30.D31
D10.D11	+	D20.D21		D32.D33
D10.D11	+	D20.D21	\rightarrow	D34.D35

Repeat Two Source Devices

- Data Type: Word and Integer

When S1 and S2 (source) are designated to repeat, the final result is set to destination device D1.

S1 (Repeat = 3)		S2 (Repeat $=3$)			D1 (Repeat		
D10	10	+	D20	25		D30	(35)
D11	15	+	D21	35		D30	(50)
D12	20	+	D22	45		D30	65

- Data Type: Double Word, Long, and Float

When S1 and S2 (source) are designated to repeat, the final result is set to destination device D1•D1+1.

	ADD(D)	$\begin{gathered} \hline \text { S1R } \\ \text { D10 } \\ \hline \end{gathered}$				S1 (Repeat = 3)		S2 (Repeat $=3$)		D1 (Repeat $=0$)
			D20	D30	3	D10.D11	+	D20.D21	\longrightarrow	(D30.D31)
						D12.D13	+	D22.D23	\longrightarrow	(D30.D31)
						D14.D15	+	D24.D25	\longrightarrow	D30.D31

Repeat Source and Destination Devices

- Data Type: Word and Integer

When S1 (source) and D1 (destination) are designated to repeat, different results are set to 3 devices starting with D1.

- Data Type: Double Word, Long, and Float

When S1 (source) and D1 (destination) are designated to repeat, different results are set to 3 devices starting with D1•D1+1.

S1 (Repeat = 3)		S2 (Repeat $=0$)		D1 (Repeat $=3$)
D10.D11	$+$	D20.D21		D30.D31
D12-D13	+	D20.D21	\rightarrow	D32-D33
D14.D15	+	D20.D21	\longrightarrow	D34.D35

Repeat All Source and Destination Devices

- Data Type: Word and Integer

When all devices are designated to repeat, different results are set to 3 devices starting with D1.

S1 $($ Repeat $=3)$			S2 (Repeat $=3$)			D1 (Repeat = 3)	
D10	10	+	D20	25	\longrightarrow	D30	35
D11	15	+	D21	35		D31	50
D12	20	+	D22	45	\longrightarrow	D32	65

- Data Type: Double Word, Long, and Float

When all devices are designated to repeat, different results are set to 3 devices starting with D1•D1+1.

S1 (Repeat $=3$)		S2 (Repeat $=3$)		D1 (Repeat = 3)
D10.D11	+	D20.D21	\rightarrow	D30.D31
D12.D13	+	D22-D23	\longrightarrow	D32.D33
D14.D15	+	D24.D25	\longrightarrow	D34.D35

Note: Special internal relay M8003 (carry/borrow) is turned on when a carry or borrow occurs in the last repeat operation. When a user program execution error occurs in any repeat operation, special internal relay M8004 (user program execution error) and the ERR LED are turned on and maintained while operation for other instructions is continued.

Repeat Operation in the MUL Instruction

Since the MUL (multiplication) instruction uses two destination devices, the result is stored to destination devices as described below. Source devices S1 and S2 and destination device D1 can be designated to repeat individually or in combination. When destination device D1 is not designated to repeat, the final result is set to destination device D1 and $\mathrm{D} 1+1$. When repeat is designated, consecutive devices as many as the repeat cycles starting with the designated device are used.

Since the repeat operation works similarly on the word and integer data types, the following examples are described using the word data type.

Repeat One Source Device

When only S1 (source) is designated to repeat, the final result is set to destination device D1•D1+1.

- Data Type: Word and Integer

S1 (Repeat = 3)		S2 (Repeat = 0)		D1 (Repeat $=0$)
D10	\times	D20	\rightarrow	(D30-D31)
D11	\times	D20	\cdots	(D30-D31)
D12	\times	D20	\longrightarrow	D30.D31

- Data Type: Double Word, Long, and Float

S1 (Repeat = 3)		S2 $($ Repeat $=0)$		D1 $($ Repeat $=0)$
D10.D11	\times	D20.D21	\rightarrow	(D30.D31)
D12.D13	\times	D20.D21	\rightarrow	(D30.D31)
D14.D15	\times	D20.D21	\longrightarrow	D30.D31

Repeat Destination Device Only

When only D1 (destination) is designated to repeat, the same result is set to 3 devices starting with D1•D1+1.

- Data Type: Word and Integer

S1 $($ Repeat $=0)$		S2 (Repeat $=0$)		D1 $($ Repeat $=3)$
D10	\times	D20	\rightarrow	D30.D31
D10	\times	D20	\rightarrow	D32.D33
D10	\times	D20	\longrightarrow	D34-D35

- Data Type: Double Word, Long, and Float

	MUL(D					S1 (Repeat = 0)	S2 (Repeat $=0$)		D1 (Repeat $=3$)	
		D10	D20	D30	REP 3	D10.D11	\times	D20.D21	\longrightarrow	D30.D31
						D10.D11	\times	D20.D21	\rightarrow	D32.D33
						D10.D11	\times	D20.D21	\longrightarrow	D34-D35

Repeat Two Source Devices

When S1 and S2 (source) are designated to repeat, the final result is set to destination device D1•D1+1.

- Data Type: Word and Integer

S1 (Repeat = 3)
$\begin{array}{ll}\text { D10 } & \times \\ \text { D11 } & \times \\ \text { D12 } & \times\end{array}$

S2 (Repeat $=\mathbf{3)}$		D1 (Repeat $=\mathbf{0})$
D20	\longrightarrow	 (D30•D31) D21 D22
D30•D31)		
D30•D31		

- Data Type: Double Word, Long, and Float

S1 (Repeat = 3)		S2 (Repeat = 3)		D1 (Repeat $=0$)
D10.D11	\times	D20.D21	\rightarrow	(D30.D31)
D12.D13	\times	D22-D23	\longrightarrow	(D30.D31)
D14•D15	\times	D24-D25	\longrightarrow	D30.D31

Repeat Source and Destination Devices

When S1 (source) and D1 (destination) are designated to repeat, different results are set to 3 devices starting with D1-D1+1.

- Data Type: Word and Integer

S1 (Repeat $=3$)		S2 (Repeat $=0$)		D1 (Repeat = 3)
D10	\times	D20	\longrightarrow	D30.D31
D11	\times	D20	\rightarrow	D32.D33
D12	\times	D20	\longrightarrow	D34.D35

- Data Type: Double Word, Long, and Float

Repeat All Source and Destination Devices

When all devices are designated to repeat, different results are set to 3 devices starting with D1•D1+1.

- Data Type: Word and Integer

SOTU	MUL(W)	S1 R	S2 R	D1 R
D10	REP			
	D20	D30	3	

S1 (Repeat $=3$)		S2 (Repeat $=3$)		D1 (Repeat $=3$)
D10	\times	D20	\rightarrow	D30.D31
D11	\times	D21	\longrightarrow	D32.D33
D12	\times	D22	\longrightarrow	D34.D35

- Data Type: Double Word, Long, and Float

S1 $($ Repeat $=\mathbf{3})$
D10.D11
D12.D13
D14.D15
S2 $($ Repeat $=$ 3)
D20.D21
D22.D23

D24.D25 \gg| D1 (Repeat $=$ 3) |
| :---: |
| D30.D31 |
| D32.D33 |
| D34.D35 |

Repeat Operation in the DIV Instruction

Since the DIV (division) instruction (except the float data type) uses two destination devices, the quotient and remainder are stored as described below. Source devices S1 and S2 and destination device D1 can be designated to repeat individually or in combination. When destination device D1 is not designated to repeat, the final result is set to destination device D1 (quotient) and D1+1 (remainder). When repeat is designated, consecutive devices as many as the repeat cycles starting with the designated device are used.

Division instructions in the float data type do not generate remainders and use two consecutive data registers to store quotients. When repeat is designated for destination of the float data type, consecutive data registers as many as the repeat cycles are used.

Repeat One Source Device

- Data Type: Word and Integer

When only S1 (source) is designated to repeat, the final result is set to destination devices D1 and D1+1.

$\mathrm{H}_{11} 1$	DIV(W)	$\begin{aligned} & \hline \text { S1 R } \\ & \text { D10 } \end{aligned}$	$\begin{aligned} & \hline \mathrm{S} 2- \\ & \mathrm{D} 20 \end{aligned}$	D1 - REP D30 3		$\begin{gathered} \mathbf{S 1}(\text { Repeat }=\mathbf{3}) \\ \text { D10 } \\ \text { D11 } \\ \text { D12 } \end{gathered}$	S2 (Repeat = 0)		D1 $($ Repeat $=0)$			
						\div	D20	-	(D30)	(D31)		
						\div	D20		(D30)	(D31)		
							\div	D20	\longrightarrow	D30	D31	
											Quotient	emainde

- Data Type: Double Word and Long

When only S1 (source) is designated to repeat, the final result is set to destination devices D1•D1+1 and D1+2•D1+3.

- Data Type: Float

When only S1 (source) is designated to repeat, the final result is set to destination devices $\mathrm{D} 1 \cdot \mathrm{D} 1+1$.

Repeat Destination Device Only

- Data Type: Word and Integer

When only D1 (destination) is designated to repeat, the same result is set to 6 devices starting with D1.

- Data Type: Double Word and Long

When only D1 (destination) is designated to repeat, the same result is set to 6 devices starting with D1•D1+1.

S1 $($ Repeat $=0)$		S2 $($ Repeat $=0)$		D1 (Repeat $=3$)	
D10.D11	\div	D20.D21	\cdots	D30.D31	D36.D37
D10.D11	\div	D20.D21	\rightarrow	D32.D33	D38.D39
D10.D11	\div	D20.D21	\rightarrow	D34-D35	D40.D41
				Quotient	Remainder

- Data Type: Float

When only D1 (destination) is designated to repeat, the same result is set to 3 devices starting with D1•D1+1.

	DIV(F)	S1				S1 $($ Repeat $=0)$	$\mathbf{S 2}($ Repeat $=0)$		D1 (Repeat = 3)	
		D10	D20	D30	3	D10.D11	\div	D20.D21	\longrightarrow	D30.D31
						D10.D11	\div	D20.D21	\longrightarrow	D32.D33
						D10.D11	\div	D20.D21	\longrightarrow	D34-D35
										Quotient

Repeat Two Source Devices

- Data Type: Word and Integer

When S1 and S2 (source) are designated to repeat, the final result is set to destination devices D1 and D1+1.

S1 (Repeat = 3)

- Data Type: Double Word and Long

When S1 and S2 (source) are designated to repeat, the final result is set to destination devices D1•D1+1 and D1+2•D1+3.

- Data Type: Float

When S1 and S2 (source) are designated to repeat, the final result is set to destination devices D1•D1+1.
$\left.\left\lvert\, \begin{array}{llllc|}\hline \text { SIV(F) } & \text { S1 R } & \text { S2 R } & \text { D1 - } & \text { REP } \\ \text { D10 } & \text { D20 } & \text { D30 } & 3\end{array}\right.\right]$

S1 (Repeat = 3)		S2 (Repeat = 3)		D1 (Repeat $=0$)
D10.D11	\div	D20.D21	\longrightarrow	(D30.D31)
D12.D13	\div	D22-D23	\rightarrow	(D30.D31)
D14•D15	\div	D24-D25	\longrightarrow	D30.D31

Repeat Source and Destination Devices

- Data Type: Word and Integer

When S1 (source) and D1 (destination) are designated to repeat, different results are set to 6 devices starting with D1.

S1 $($ Repeat $=\mathbf{3)}$		S2 $($ Repeat $=\mathbf{0)}$		D1 $($ Repeat $=\mathbf{3})$	
D10	\div	D20	\longrightarrow	D30	D33
D11	\div	D20	\longrightarrow	D31	D34
D12	\div	D20	\longrightarrow	D32	D35
					Quotient
				Remainder	

- Data Type: Double Word and Long

When S1 (source) and D1 (destination) are designated to repeat, different results are set to 6 devices starting with D1•D1+1.

S1 (Repeat = 3)		S2 (Repeat $=0$)		D1 $($ Repeat $=3)$	
D10.D11	\div	D20.D21	\longrightarrow	D30.D31	D36.D37
D12.D13	\div	D20.D21	\rightarrow	D32.D33	D38.D39
D14-D15	\div	D20.D21	\rightarrow	D34-D35	D40•D41
				Quotient	Remainder

- Data Type: Float

When S1 (source) and D1 (destination) are designated to repeat, different results are set to 3 devices starting with D1•D1+1.

SOTU - DIV(F) | | S1 R | S2- | D1 R | REP |
| :--- | :--- | :--- | :--- | :---: |
| D10 | D20 | D30 | 3 | |

S1 $($ Repeat $=0)$		S2 (Repeat $=0$)		D1 (Repeat = 3)
D10.D11	\div	D20.D21	\rightarrow	D30.D31
D12.D13	\div	D20.D21	\rightarrow	D32.D33
D14-D15	\div	D20.D21	\rightarrow	D34-D35
				Quotient

Repeat All Source and Destination Devices

- Data Type: Word and Integer

When all devices are designated to repeat, different results are set to 6 devices starting with D1.
$\left.\begin{array}{|llllc|}\hline \text { SOTU }\end{array}-\begin{array}{|llll}\text { DIV(W) } & \text { S1 R } & \text { S2 R } & \text { D1 R } \\ \text { D10 } & \text { REP } \\ & \text { D20 } & \text { D30 } & 3\end{array}\right]$

S1 $($ Repeat $=\mathbf{3)}$		S2 $($ Repeat $=\mathbf{3)}$		D1 (Repeat $=\mathbf{3})$			
D10	\div	D20	\longrightarrow	D30	D33		
D11	\div	D21		\longrightarrow	D31		D34
:---:							
D12							

- Data Type: Double Word and Long

When all devices are designated to repeat, different results are set to 6 devices starting with D1•D1+1.

S1 (Repeat = 3)		S2 (Repeat $=3$)		D1 (Repeat = 3)	
D10.D11	\div	D20.D21	\cdots	D30.D31	D36.D37
D12.D13	\div	D22.D23	\rightarrow	D32.D33	D38.D39
D14-D15	\div	D24.D25	\longrightarrow	D34-D35	D40.D41
				Quotient	Remainder

- Data Type: Float

When all devices are designated to repeat, different results are set to 3 devices starting with D1•D1+1.

SIV(F)	S1 R	S2 R	D1 R	REP
D10	D20	D30	3	

S1 (Repeat $=\mathbf{0})$		S2 (Repeat $=\mathbf{0})$		D1 (Repeat $=$ 3)
D10•D11	\div	D20•D21	\longrightarrow	D30•D31
D12•D13	\div	D22•D23	\longrightarrow	D32•D33 D34•D35
D14•D15	\div	D24•D25	\longrightarrow	
Quotient				

Note: When a user program execution error occurs in any repeat operation, special internal relay M8004 (user program execution error) and the ERR LED are turned on and maintained while operation for other instructions is continued.

INC (Increment)

$\begin{array}{ll}\text { Data type W or I: } & S / D+1 \rightarrow S / D \\ \text { Data type } D \text { or } L: & S / D \cdot S / D+1+1 \rightarrow S / D \cdot S / D+1\end{array}$
When input is on, one is added to the 16 - or 32-bit data designated by device S / D and the result is stored to the same device.
This instruction is available on upgraded CPU modules with system program version 210 or higher.

DEC (Decrement)

Data type W or I: $\quad S / D-1 \rightarrow S / D$
Data type D or $L: \quad S / D \cdot S / D+1-1 \rightarrow S / D \cdot S / D+1$
When input is on, one is subtracted from the 16- or 32-bit data designated by device S/D and the result is stored to the same device.

This instruction is available on upgraded CPU modules with system program version 210 or higher.

Applicable CPU Modules

FC5A-C10R2/C/D F	FC5A-C16R2/C/D	FC5A-C24R2/C/D	FC5A-D16RK1/RS1			FC5A-D32K3/S3				FC5A-D12K1E/S1E	
X	X	X	X			X				X	
Valid Devices											
Device	Function		I	Q	M	R	T	C	D	Constant	Repeat
S/D (Source/Destination)) Device to increment data		-	-	-	-	-	-	X	-	-

For the valid device address range, see pages 6-1 and 6-2 (Basic Vol.).
Since the INC and DEC instructions are executed in each scan while input is on, a pulse input from a SOTU or SOTD instruction should be used as required.

Valid Data Types

W (word)	X
\mathbf{I} (integer)	X
D (double word)	X
L (long)	X
F (float)	-

When a word device such as D (data register) is designated as the source/destination, 1 point (word or integer data type) or 2 points (double-word or long data type) are used.

Increment beyond Limits

When the S / D value is at its maximum and incremented by one, the value returns to 0 , turning on the carry (M8003).

Decrement beyond Limits

When the S/D value is at its minimum and decremented by one, the value returns to its maximum value (word or doubleword data type) or to -1 (integer or long data type), turning on the borrow (M8003).

Example: INC

$\mathrm{D} 10 \square \mathrm{D} 00 \mathrm{D} 10 \mathrm{D}$
When input 10 is turned on, the data of D10 is incremented by one. If the SOTU is not programmed, the data of D10 is incremented in each scan.

Example: DEC

When input I1 is turned on, the data of D20 is decremented by one. If the SOTU is not programmed, the data of D20 is decremented in each scan.

ROOT (Root)

Data type W: $\quad \sqrt{\text { S1 }} \rightarrow$ D1
When input is on, the square root of device designated by S 1 is extracted and is stored to the destination designated by D1.

The square root is calculated to two decimals, omitting the figures below the second place of decimals, and multiplied by 100.
Data type D: $\quad \sqrt{\mathrm{S} 1 \cdot \mathrm{~S} 1+1} \rightarrow \mathrm{D} 1 \cdot \mathrm{D} 1+1$
When input is on, the square root of device designated by $\mathrm{S} 1 \cdot \mathrm{~S} 1+1$ is extracted and is stored to the destination designated by D1•D1+1.

The square root is calculated to two decimals, omitting the figures below the second place of decimals, and multiplied by 100.
Data type F: $\quad \sqrt{\mathrm{S} 1 \cdot \mathrm{~S} 1+1} \rightarrow \mathrm{D} 1 \cdot \mathrm{D} 1+1$
When input is on, the square root of device designated by $\mathrm{S} 1 \cdot \mathrm{~S} 1+1$ is extracted and is stored to the destination designated by D1•D1+1.

Applicable CPU Modules

FC5A-C10R2/C/D	FC5A-C16R2/C/D	FC5A-C24R2/C/D	FC5A-D16RK1/RS1			FC5A-D32K3/S3				FC5A-D12K1E/S1E	
X	X	X	X			X				X	
Valid Devices											
Device	Function		I	Q	M	R	T	C	D	Constant	Repeat
S1 (Source 1)	Binary data		-	-	-	-	-	-	X	X	-
D1 (Destination 1)	Destination to store results		-	-	-	-	-	-	X	-	-

For the valid device address range, see pages 6-1 and 6-2 (Basic Vol.).
When F (float) data type is selected and source device $S 1$ contains a negative value, a user program execution error will result, turning on special internal relay M8004 and the ERR LED on the CPU module.
When F (float) data type is selected and S1 does not comply with the normal floating-point format, a user program execution error will result, turning on special internal relay M8004 and ERR LED on the CPU module.
Since the ROOT instruction is executed in each scan while input is on, a pulse input from a SOTU or SOTD instruction should be used as required.

Valid Data Types

W (word)	X
\mathbf{I} (integer)	-
D (double word)	X
L (long)	-
F (float)	X

When a word device such as D (data register) is designated as the source or destination, 1 point (word data type) or 2 points (double-word or float data type) are used.

Examples: ROOT

$\left|1-\begin{array}{|cc|}\text { ROOT(W) } & \text { S1 } \\ & \text { D10 } \\ \text { D10 } & \text { D20 }\end{array}\right|$

SUM (Sum)

Calculate the total of designated data, depending on the calculation option.
ADD:
When input is on, N blocks of 16- or 32-bit data starting at device designated by S1 are added and the result is stored to device designated by D1. S2 specifies the quantity of data blocks.

XOR:
When input is on, N blocks of 16-bit data starting at device designated by S 1 are XORed and the result is stored to device designated by D1. S2 specifies the quantity of data blocks.

This instruction is available on upgraded CPU modules with system program version 210 or higher.

Applicable CPU Modules

FC5A-C10R2/C/D	FC5A-C16R2/C/D	FC5A-C24R2/C/D	FC5A-D16RK1/RS1	FC5A-D32K3/S3	FC5A-D12K1E/S1E
X	X	X	X	X	X

Valid Devices

Device	Function	\mathbf{I}	\mathbf{Q}	\mathbf{M}	\mathbf{R}	\mathbf{T}	\mathbf{C}	\mathbf{D}	Constant	Repeat
S1 (Source 1)	First device address to calculate	-	-	-	-	X	X	X	-	
S2 (Source 2)	Quantity of data blocks	-	-	-	-	-	-	X	X	
D1 (Destination 1)	Destination to store results	-	-	-	-	-	-	X	-	

For the valid device address range, see pages 6-1 and 6-2 (Basic Vol.).
When T (timer) or C (counter) is used as S1, the timer/counter current value (TC or CC) is read out.
When F (float) data type is selected, only data register can be designated as S1.
For source S2, 1 word is always used without regard to the data type.
When F (float) data type is selected and S1 does not comply with the normal floating-point format, a user program execution error will result, turning on special internal relay M8004 and ERR LED on the CPU module.

When S 2 is 0 or out of the correct value range for the selected device, a user program execution error will result, turning on special internal relay M8004 and ERR LED on the CPU module.

Valid Data Types

Calculation	ADD	XOR
W (word)	X	X
I (integer)	X	-
D (double word)	X	-
L (long)	X	-
F (float)	X	-

When ADD is selected, all data types can be used.
When XOR is selected, only W (word) data type can be used.
When a word device such as T (timer), C (counter), or D (data register) is designated as the source or destination, 1 point (word or integer data type) or 2 points (double-word, long, or float data type) are used.

Quantity of Source and Destination Devices

Depending on the ADD or XOR operation for W (word) and I (integer) data types, the destination uses a different quantity of devices.

Operation		W (word), I (integer)	D (double word), L (long), F (float)	
ADD	S1, S2:	1 word device	S1, D1:	2 word devices
	D1:	2 word devices	S2: word device	

Carry and Borrow

In advanced instructions involving D (double word), L (long), or F (floating point) data, special internal relay M8003 (carry and borrow) is turned on when the execution of the instruction results in the following value.

Data Type	M8003	Execution Result
\mathbf{D} (double word)	1	Out of the range between 0 to 4,294,967,295
L (long)	1	Out of the range between $-2,147,483,648$ to $2,147,483,647$
F (float)	1	See the figure below.

Carry and Borrow in Floating-Point Data Processing

When advanced instructions involving floating-point data are executed, special internal relay M8003 (carry and borrow) is updated.

M8003	Execution Result	Value
1	$\neq 0$	Overflow (out of the range between -3.402823×10^{38} and 3.402823×10^{38})
1	0	Not zero (within the range between $-1.175495 \times 10^{-38}$ and 1.175495×10^{-38})
0	0	Zero

Examples: SUM

- Data Type: Word

XOR Operation			
	D0	$(0105 h)$	0000000100000101
	D1	$(02 F 6 h)$	0000001011110110
	D2	$(0307 h)$	0000001100000111
XOR	D3	$(0408 h)$	0000010000001000
	D100	$(04 F C h)$	0000010011111100

- Data Type: Integer

- Data Type: Double Word

- Data Type: Long

- Data Type: Float

D0.D1	12.345	D100•D101	18.3926
D2.D3	1.56		
D4•D5	0.9876		
D6.D7	3.5		

RNDM (Random)

When input is on, pseudorandom numbers are generated.
Source devices S1 and S2 specify the minimum and maximum values of the generated pseudorandom numbers, respectively. S 2 value must be larger than S1 value. S 1 and S 2 values must be between 0 and 32767 .

The result is stored to the destination designated by device D1.
This instruction is available on upgraded CPU modules with system program version 210 or higher.

Applicable CPU Modules

FC5A-C10R2/C/D	FC5A-C16R2/C/D	FC5A-C24R2/C/D	FC5A-D16RK1/RS1	FC5A-D32K3/S3	FC5A-D12K1E/S1E
X	X	X	X	X	X

Valid Devices

Device	Function	\mathbf{I}	\mathbf{Q}	\mathbf{M}	\mathbf{R}	\mathbf{T}	\mathbf{C}	\mathbf{D}	Constant	Repeat
S1 (Source 1)	Minimum value of pseudorandom numbers	-	-	-	-	-	-	X	X	
S2 (Source 2)	Maximum value of pseudorandom numbers	-	-	-	-	-	-	X		X
D1 (Destination 1)	Destination to store results	-	-	-	-	-	-	X		-

For the valid device address range, see pages 6-1 and 6-2 (Basic Vol.).
When S1 or S2 value is over 32767, a user program execution error will result, turning on special internal relay M8004 and ERR LED on the CPU module.

When S1 value is larger than or equal to S2 value, a user program execution error will result, turning on special internal relay M8004 and ERR LED on the CPU module.

Valid Data Types

W (word)	X
I (integer)	-
D (double word)	-
L (long)	-
F (float)	-

When a word device such as D (data register) is designated as the source or destination, 1 point (word) is used.

Example: RNDM

When input 10 is turned on, RNDM is executed to generate a pseudorandom value ranging between 1 and 6 , and stores the result to data register D100 designated by destination device D1.

6: Boolean Computation Instructions

Introduction

Boolean computations use the AND, OR, and exclusive OR statements as carried out by the ANDW, ORW, and XORW instructions in the word data type, respectively.

ANDW (AND Word)

$\mathrm{S} 1 \cdot \mathrm{~S} 2 \rightarrow \mathrm{D} 1$
When input is on, 16 - or 32-bit data designated by source devices S1 and S2 are ANDed, bit by bit. The result is set to destination device D1.

$$
\begin{aligned}
& \left.\mathbf{S 1}=\begin{array}{|l|l|l|l|l|}
\hline 1 & 1 & 1 & 0 & \langle\langle |
\end{array}\right\rangle \begin{array}{|l|l|l|}
\hline
\end{array} \\
& \left.\mathbf{S 2}=\begin{array}{|l|l|l|l|l|}
\hline 1 & 0 & 0 & 0 & \langle
\end{array}\right\rangle\left\langle\begin{array}{|l|l|}
\hline
\end{array}\right. \\
& \text { D1 = } \left.\begin{array}{|l|l|l|l|l|l|l|}
\hline 1 & 0 & 0 & 0 \\
\hline
\end{array}\right\rangle\left\langle\begin{array}{|l|l|l|}
\hline
\end{array}\right.
\end{aligned}
$$

S1	S2	D1
0	0	0
0	1	0
1	0	0
1	1	1

ORW (OR Word)

$\mathrm{S} 1+\mathrm{S} 2 \rightarrow \mathrm{D} 1$
When input is on, 16- or 32-bit data designated by source devices S1 and S2 are ORed, bit by bit. The result is set to destination device D1.

$$
\begin{aligned}
& \left.\mathbf{S 1}=\begin{array}{|l|l|l|l|l|}
\hline 1 & 1 & 1 & 0 & \langle\langle |
\end{array} \right\rvert\, \begin{array}{|l|l|l|}
\hline
\end{array} \\
& \left.\mathbf{S 2}=\begin{array}{|l|l|l|l|l|}
\hline 1 & 0 & 0 & 0 & \langle\langle |
\end{array}\right\rangle \begin{array}{|l|l|l|}
\hline
\end{array}
\end{aligned}
$$

S1	S2	D1
0	0	0
0	1	1
1	0	1
1	1	1

XORW (Exclusive OR Word)

$\mathrm{S} 1 \oplus \mathrm{~S} 2 \rightarrow \mathrm{D} 1$
When input is on, 16- or 32-bit data designated by source devices S1 and S2 are exclusive ORed, bit by bit. The result is set to destination device D1.

S1	S2	D1
0	0	0
0	1	1
1	0	1
1	1	0

Applicable CPU Modules

FC5A-C10R2/C/D	FC5A-C16R2/C/D	FC5A-C24R2/C/D	FC5A-D16RK1/RS1	FC5A-D32K3/S3	FC5A-D12K1E/S1E
X	X	X	X	X	X

Valid Devices

Device	Function	I	Q	M	R	T	C	D	Constant	Repeat
S1 (Source 1)	Data for computation	X	X	X	X	X	X	X	X	1-99
S2 (Source 2)	Data for computation	X	X	X	X	X	X	X	X	1-99
D1 (Destination 1)	Destination to store results	-	X	这	X	X	X	X	-	1-99

For the valid device address range, see pages 6-1 and 6-2 (Basic Vol.).
(Internal relays M0 through M2557 can be designated as D1. Special internal relays cannot be designated as D1.
When T (timer) or C (counter) is used as S1 or S2, the timer/counter current value (TC or CC) is read out. When T (timer) or C (counter) is used as D1, the data is written in as a preset value (TP or CP) which can be 0 through 65535.
Since the Boolean computation instructions are executed in each scan while input is on, a pulse input from a SOTU or SOTD instruction should be used as required.

Valid Data Types

\mathbf{W} (word)	X
\mathbf{I} (integer)	-
\mathbf{D} (double word)	X
\mathbf{L} (long)	-
F (float)	-

Abstract

When a bit device such as I (input), Q (output), M (internal relay), or R (shift register) is designated as the source or destination, 16 points (word data type) or 32 points (double-word data type) are used. When repeat is designated for a bit device, the quantity of device bits increases in 16- or 32-point increments.

When a word device such as T (timer), C (counter), or D (data register) is designated as the source or destination, 1 point (word data type) or 2 points (double-word data type) are used. When repeat is designated for a word device, the quantity of device words increases in 1- or 2-point increments.

Example: XORW

To convert optional output status among a series of 10 output points, use the XORW instruction in combination with 10 internal relay points.

This program will invert the status of the shaded outputs at the left from on to off, and those not shaded from off to on.

Ten outputs Q0 through Q11 are assigned to 10 internal relays M0 through M11.

Five internal relays $\mathrm{M} 0, \mathrm{M} 2, \mathrm{M} 4, \mathrm{M} 6$, and M 10 are set by initialize pulse special internal relay M8120.

When input 11 is turned on, the XORW instruction is executed to invert the status of outputs Q0, Q2, Q4, Q6, and Q10.

Repeat Operation in the ANDW, ORW, and XORW Instructions

Source devices S1 and S2 and destination device D1 can be designated to repeat individually or in combination. When destination device D1 is not designated to repeat, the final result is set to destination device D1. When repeat is designated, consecutive devices as many as the repeat cycles starting with the designated device are used. Since the repeat operation works similarly on the ANDW (AND word), ORW (OR word), and XORW (exclusive OR word) instructions, the following examples are described using the ANDW instruction.

Repeat One Source Device

- Data Type: Word

When only S1 (source) is designated to repeat, the final result is set to destination device D1.

- Data Type: Double Word

When only S1 (source) is designated to repeat, the final result is set to destination device D1•D1+1.

\mathcal{H}_{11}						S1 (Repeat = 3)		S2 (Repeat $=0$)		D1 (Repeat = 0)
	AND	S1R D10	S2- D20	D1-	REP 3		-	D20.D21	\longrightarrow	(D30-D31)
						D12.D13		D20.D21	\rightarrow	(D30-D31)
						D14-D15	-	D20.D21	\longrightarrow	D30.D31

Repeat Destination Device Only

- Data Type: Word

When only D1 (destination) is designated to repeat, the same result is set to 3 devices starting with D1.

- Data Type: Double Word

When only D1 (destination) is designated to repeat, the same result is set to 3 devices starting with D1•D1+1.

Repeat Two Source Devices

- Data Type: Word

When S1 and S2 (source) are designated to repeat, the final result is set to destination device D1.
SOTU ANDW(W) $\left.\begin{array}{llllc|}\hline \text { S1 R } & \text { S2 R } & \text { D1- } & \text { REP } \\ \text { D10 } & \text { D20 } & \text { D30 } & 3\end{array}\right]$

S1 (Repeat = 3)	S2 (Repeat = 3)		D1 (Repeat $=0$)
D10	D20	\rightarrow	(D30)
D11	D21	\rightarrow	(D30)
D12	D22	\longrightarrow	D30

- Data Type: Double Word

When S1 and S2 (source) are designated to repeat, the final result is set to destination device D1•D1+1.

Repeat Source and Destination Devices

- Data Type: Word

When S1 (source) and D1 (destination) are designated to repeat, different results are set to 3 devices starting with D1.
$\left.\begin{array}{|ccccc|}\hline \text { SOTU }\end{array}+\begin{array}{cccc}\text { ANDW(W) } & \text { S1 R } & \text { S2 - } & \text { D1 R } \\ \text { D10 } & \text { REP } \\ \text { D20 } & \text { D30 } & 3\end{array}\right]$

S1 (Repeat $=3$)	S2 (Repeat $=0$)		D1 (Repeat = 3)
D10	D20	\rightarrow	D30
D11	D20	\rightarrow	D31
D12	D20	\rightarrow	D32

- Data Type: Double Word

When S1 (source) and D1 (destination) are designated to repeat, different results are set to 3 devices starting with D1-D1+1.

	ANDW(D)					S1 (Repeat = 3)	$\mathbf{S 2}($ Repeat $=0)$		D1 (Repeat = 3)	
		D10	D20	D30	3	D10.D11		D20.D21	\longrightarrow	D30.D31
						D12.D13		D20.D21	\rightarrow	D32.D33
						D14.D15		D20.D21	\longrightarrow	D34.D35

Repeat All Source and Destination Devices

- Data Type: Word

When all devices are designated to repeat, different results are set to 3 devices starting with D1.

| SOTU |
| :---: | :---: | :---: | :---: | :---: |$-$| ANDW(W) | S1 R | S2 R | D1 R |
| :---: | :---: | :---: | :---: |
| D10 | R20 | D30 | 3 |

S1 (Repeat $=3$)	S2 (Repeat = 3)		D1 $($ Repeat $=3)$
D10	D20	\longrightarrow	D30
D11	D21	\longrightarrow	D31
D12	D22	\longrightarrow	D32

- Data Type: Double Word

When all devices are designated to repeat, different results are set to 3 devices starting with D1•D1+1.

Note: When a user program error occurs in any repeat operation, special internal relay M8004 (user program execution error) and the ERROR LED are turned on and maintained while operation for other instructions is continued. For the advanced instruction which has caused a user program execution error, results are not set to any destination.

7: Shift / Rotate Instructions

Introduction

Bit shift instructions are used to shift the data string starting with source device S 1 to the left or right by 1 to 15 bits as designated. The data string can be 1 to 65535 bits. The result is set to the source device S 1 and a carry (special internal relay M8003). The LSB or MSB is filled with 0 or 1 as designated.

Bit shift and rotate instructions are used to shift the 16- or 32-bit data string in the designated source device S1 to the left or right by the quantity of bits designated. The result is set to the source device S1 and a carry (special internal relay M8003).

The BCD left shift instruction shifts the BCD digits in two consecutive data registers to the left.
The word shift instruction is used to move 16-bit data to a destination data register and shifts down the data of subsequent data registers as many as designated.

SFTL (Shift Left)

$$
\mathrm{CY} \leftarrow \mathrm{~S} 1
$$

When input is on, N_B-bit data string starting with source device S 1 is shifted to the left by the quantity of bits designated by device Bits.

The result is set to source device S1, and the last bit status shifted out is set to a carry (special internal relay M8003). Zero or 1 designated by source device S2 is set to the LSB.

- $S 2=0, N _B=16$, Bits $=1$

After shift:

Applicable CPU Modules

FC5A-C10R2/C/D	FC5A-C16R2/C/D	FC5A-C24R2/C/D	FC5A-D16RK1/RS1	FC5A-D32K3/S3	FC5A-D12K1E/S1E
X	X	X	X	X	X

Valid Devices

Device	Function	\mathbf{I}	\mathbf{Q}	\mathbf{M}	\mathbf{R}	\mathbf{T}	\mathbf{C}	\mathbf{D}	Constant	Repeat
S1 (Source 1)	First data for bit shift	-	X	\mathbf{A}	X	-	-	X	-	-
S2 (Source 2)	Data to shift into the LSB	X	X	X	X	-	-	-	0 or 1	
N_B	Number of bits in the data string	-	-	-	-	-	-	X	$1-65535$	-
Bits	Quantity of bits to shift	-	-	-	-	-	-	-	$1-15$	-

For the valid device address range, see pages 6-1 and 6-2 (Basic Vol.).
Internal relays M0 through M2557 can be designated as S1. Special internal relays cannot be designated as S 1 .
Since the SFTL instruction is executed in each scan while input is on, a pulse input from a SOTU or SOTD instruction should be used as required.

Examples: SFTL

M8120 is the initialize pulse special internal relay.
When the CPU starts operation, the MOV (move) instruction sets 43690 to data register D10.

Each time input 10 is turned on, 16-bit data of data register D10 is shifted to the left by 1 bit as designated by device Bits. The last bit status shifted out is set to a carry (special internal relay M 8003). Zeros are set to the LSB.

- N_B = 32 bits

M8120 is the initialize pulse special internal relay.
When the CPU starts operation, the MOV (move) instructions set 0 and 65535 to data registers D10 and D11, respectively.

Each time input 10 is turned on, 32-bit data of data registers D10 and D11 is shifted to the left by 2 bits as designated by device Bits. D10 is the low word, and D11 is the high word.

The last bit status shifted out is set to a carry (special internal relay M 8003). Ones are set to the LSBs.

Bits to shift $=2$
Before shift:

SFTR (Shift Right)

$\mathrm{S} 1 \rightarrow \mathrm{CY}$
When input is on, $N _B$-bit data string starting with source device $S 1$ is shifted to the right by the quantity of bits designated by device Bits.

The result is set to source device S 1 , and the last bit status shifted out is set to a carry (special internal relay M8003). Zero or 1 designated by source device S2 is set to the MSB.

- $S 2=0, N _B=16$, Bits $=1$

Applicable CPU Modules

FC5A-C10R2/C/D	FC5A-C16R2/C/D	FC5A-C24R2/C/D	FC5A-D16RK1/RS1	FC5A-D32K3/S3	FC5A-D12K1E/S1E
X	X	X	X	X	X

Valid Devices

Device	Function	I	Q	M	R	T	C	D	Constant	Repeat
S1 (Source 1)	First data for bit shift	-	X	\mathbf{A}	X	-	-	X	-	-
S2 (Source 2)	Data to shift into the MSB	X	X	X	X	-	-	-	0 or 1	-
N_B	Number of bits in the data string	-	-	-	-	-	-	X	$1-65535$	-
Bits	Quantity of bits to shift	-	-	-	-	-	-	-	$1-15$	-

For the valid device address range, see pages 6-1 and 6-2 (Basic Vol.).
Since the SFTR instruction is executed in each scan while input is on, a pulse input from a SOTU or SOTD instruction should be used as required.

Example: SFTR

- Data Type: Word

M8120 is the initialize pulse special internal relay.
When the CPU starts operation, the MOV (move) instruction sets 29 to data register D10.

Each time input 10 is turned on, 16-bit data of data register D10 is shifted to the right by 2 bits as designated by device Bits. The last bit status shifted out is set to a carry (special internal relay M8003). Zeros are set to the MSB.

- Data Type: Double Word

Bits to shift = 1

M8120 is the initialize pulse special internal relay.
When the CPU starts operation, the MOV (move) instructions set 65535 and 0 to data registers D10 and D11, respectively.

Each time input 10 is turned on, 32-bit data of data registers D10 and D11 is shifted to the right by 1 bit as designated by device Bit. D10 is the low word, and D11 is the high word.

The last bit status shifted out is set to a carry (special internal relay M8003). Ones are set to the MSB.

Before shift:

After shift:

BCDLS (BCD Left Shift)

When input is on, the 32-bit binary data designated by S 1 is converted into 8 BCD digits, shifted to the left by the quantity of digits designated by S2, and converted back to 32bit binary data.
Valid values for each of S1 and S1+1 are 0 through 9999.
The quantity of digits to shift can be 1 through 7 .
Zeros are set to the lowest digits as many as the digits shifted.
When S2 = $\mathbf{1}$ (digits to shift)

Applicable CPU Modules

FC5A-C10R2/C/D	FC5A-C16R2/C/D	FC5A-C24R2/C/D	FC5A-D16RK1/RS1	FC5A-D32K3/S3	FC5A-D12K1E/S1E
X	X	X	X	X	X

Valid Devices

Device	Function	\mathbf{I}	\mathbf{Q}	\mathbf{M}	\mathbf{R}	\mathbf{T}	\mathbf{C}	\mathbf{D}	Constant	Repeat
S1 (Source 1)	Data for BCD shift	-	-	-	-	-	-	X	-	-
S2 (Source 2)	Quantity of digits to shift	X	$1-7$	-						

For the valid device address range, see pages 6-1 and 6-2 (Basic Vol.).
When T (timer) or C (counter) is used as S2, the timer/counter current value (TC or $C C$) is read out.
The quantity of digits to shift designated as S2 can be 1 through 7.
Make sure that the source data determined by S 1 and $\mathrm{S} 1+1$ is between 0 and 9999 for each data register. If either source data is over 9999, a user program execution error will result, turning on special internal relay M8004 and the ERR LED on the CPU module. When S2 is over 7, a user program execution error will also result.

Valid Data Types

W (word)	-
\mathbf{I} (integer)	-
\mathbf{D} (double word)	X
L (long)	-
F (float)	-

When a word device such as D (data register) is designated as source S1, 2 points (double-word data type) are used.

When a bit device such as I (input), Q (output), M (internal relay), or R (shift register) is designated as source S2, 16 points are used.

When a word device such as T (timer), C (counter), or D (data register) is designated as source S2, 1 point is used.

Example: BCDLS

M8120 is the initialize pulse special internal relay.
When the CPU starts operation, the MOV (move) instructions set 123 and 4567 to data registers D10 and D11, respectively.

Each time input IO is turned on, the 32-bit binary data of data registers D10 and D11 designated by S1 is converted into 8 BCD digits, shifted to the left by 1 digit as designated by device S2, and converted back to 32-bit binary data.
Zeros are set to the lowest digits as many as the digits shifted.

When S2 = $\mathbf{1}$ (digits to shift)

Before shift:

After second shift: \quad\begin{tabular}{|l|l|l|l|l|l|l|l|l|}
\hline 1

\hline 2 \& 3 \& 4 \& 5

\hline

6 \& 7

MSD \& 0

\hline
\end{tabular}

WSFT (Word Shift)

When input is on, N blocks of 16 -bit word data starting with device designated by D1 are shifted up to the next 16-bit positions. At the same time, the data designated by device S 1 is moved to device designated by D1. S2 specifies the quantity of blocks to move.

When S2 = 3 (quantity of blocks to shift)

Applicable CPU Modules

FC5A-C10R2/C/D	FC5A-C16R2/C/D	FC5A-C24R2/C/D	FC5A-D16RK1/RS1	FC5A-D32K3/S3	FC5A-D12K1E/S1E
X	X	X	X	X	X

Valid Devices

Device	Function	I	Q	\mathbf{M}	\mathbf{R}	T	C	D	Constant	Repeat
S1 (Source 1)	Source data for word shift	X								
S2 (Source 2)	Quantity of blocks to shift	X								
D1 (Destination 1)	First device address to shift	-	-	-	-	-	-	X	-	

For the valid device address range, see pages 6-1 and 6-2 (Basic Vol.).
When T (timer) or C (counter) is used as S1 or S2, the timer/counter current value (TC or CC) is read out.

Valid Data Types

W (word)	X
I (integer)	-
D (double word)	-
L (long)	-
F (float)	-

When a bit device such as I (input), Q (output), M (internal relay), or R (shift register) is designated as source S1 or S2, 16 points are used.
When a word device such as T (timer), C (counter), or D (data register) is designated as source S1 or S2, 1 point is used.

Special Internal Relay M8024: BMOV/WSFT Executing Flag

While the BMOV or WSFT is executed, M8024 turns on. When completed, M8024 turns off. If the CPU is powered down while executing BMOV or WSFT, M8024 remains on when the CPU is powered up again.

Example: WSFT

D100 through D102 \rightarrow D101 through D103
D10 \rightarrow D100
When input 10 is turned on, data of 3 data registers starting with D100 designated by destination device D1 is shifted to the next data registers. Data of data register D10 designated by source device S1 is moved to D100 designated by destination device D1.

Before shift: After first shift:

ROTL (Rotate Left)

When input is on, 16- or 32-bit data of the designated source device S1 is rotated to the left by the quantity of bits designated by device bits.

The result is set to the source device S 1 , and the last bit status rotated out is set to a carry (special internal relay M8003).

- Data Type: Word (bits to rotate $=1$)

Before rotation:

- Data Type: Double Word (bits to rotate =1)

Before rotation:

After rotation:

Applicable CPU Modules

FC5A-C10R2/C/D	FC5A-C16R2/C/D	FC5A-C24R2/C/D	FC5A-D16RK1/RS1	FC5A-D32K3/S3	FC5A-D12K1E/S1E
X	X	X	X	X	X

Valid Devices

Device	Function	\mathbf{I}	\mathbf{Q}	\mathbf{M}	\mathbf{R}	\mathbf{T}	\mathbf{C}	\mathbf{D}	Constant	Repeat
S1 (Source 1)	Data for bit rotation	-	X	\mathbf{A}	X	-	-	X	-	-
bits	Quantity of bits to rotate	-	-	-	-	-	-	-	$1-15,1-31$	-

For the valid device address range, see pages 6-1 and 6-2 (Basic Vol.).
a Internal relays M0 through M2557 can be designated as S1. Special internal relays cannot be designated as S1.
The quantity of bits to rotate can be 1 through 15 for the word data type, or 1 through 31 for the double-word data type.
Since the ROTL instruction is executed in each scan while input is on, a pulse input from a SOTU or SOTD instruction should be used as required.

Valid Data Types

\mathbf{W} (word)	X
\mathbf{I} (integer)	-
\mathbf{D} (double word)	X
L (long)	-
F (float)	-

When a bit device such as Q (output), M (internal relay), or R (shift register) is designated as the source, 16 points (word data type) or 32 points (double-word data type) are used.

When a word device such as D (data register) is designated as the source, 1 point (word data type) or 2 points (double-word data type) are used.

Example: ROTL

- Data Type: Word

Bits to rotate =1

- Data Type: Double Word

M8120 is the initialize pulse special internal relay.
When the CPU starts operation, the MOV (move) instruction sets 40966 to data register D10.

Each time input IO is turned on, 16-bit data of data register D10 is rotated to the left by 1 bit as designated by device bits.

The status of the MSB is set to a carry (special internal relay M8003).

Each time input I1 is turned on, 32-bit data of data registers D10 and D11 is rotated to the left by 1 bit as designated by device bits.

The status of the MSB is set to a carry (special internal relay M8003).

Bits to rotate $=1$
Before rotation: D10•D11 = 2,684,788,742

After rotation: D10•D11 = 1,074,610,189

ROTR (Rotate Right)

When input is on, 16- or 32-bit data of the designated source device S1 is rotated to the right by the quantity of bits designated by device bits.

The result is set to the source device S 1 , and the last bit status rotated out is set to a carry (special internal relay M8003).

- Data Type: Word (bits to rotate = 1)

Before rotation:

- Data Type: Double Word (bits to rotate = 1)

Before rotation:

After rotation:

Applicable CPU Modules

FC5A-C10R2/C/D	FC5A-C16R2/C/D	FC5A-C24R2/C/D	FC5A-D16RK1/RS1	FC5A-D32K3/S3	FC5A-D12K1E/S1E
X	X	X	X	X	X

Valid Devices

Device	Function	\mathbf{I}	\mathbf{Q}	\mathbf{M}	\mathbf{R}	\mathbf{T}	\mathbf{C}	\mathbf{D}	Constant	Repeat
S1 (Source 1)	Data for bit rotation	-	X	\mathbf{A}	X	-	-	X	-	-
bits	Quantity of bits to rotate	-	-	-	-	-	-	-	$1-15,1-31$	-

For the valid device address range, see pages 6-1 and 6-2 (Basic Vol.).
a Internal relays M0 through M2557 can be designated as S1. Special internal relays cannot be designated as S1.
The quantity of bits to rotate can be 1 through 15 for the word data type, or 1 through 31 for the double-word data type.
Since the ROTR instruction is executed in each scan while input is on, a pulse input from a SOTU or SOTD instruction should be used as required.

Valid Data Types

\mathbf{W} (word)	X
\mathbf{I} (integer)	-
\mathbf{D} (double word)	X
L (long)	-
F (float)	-

When a bit device such as Q (output), M (internal relay), or R (shift register) is designated as the source, 16 points (word data type) or 32 points (double-word data type) are used.

When a word device such as D (data register) is designated as the source, 1 point (word data type) or 2 points (double-word data type) are used.

Example: ROTR

- Data Type: Word

Bits to rotate $=2$
Before rotation: D20 = $\mathbf{1 3}$

After first rotation: D20 = 16387

After second rotation: D20 = 53248

M8120 is the initialize pulse special internal relay.
When the CPU starts operation, the MOV (move) instruction sets 13 to data register D20.

Each time input I1 is turned on, 16-bit data of data register D20 is rotated to the right by 2 bits as designated by device bits.

The last bit status rotated out is set to a carry (special internal relay M8003).

- Data Type: Double Word

Each time input I1 is turned on, 32-bit data of data registers D20 and D21 is rotated to the right by 1 bit as designated by device bits.

The last bit status rotated out is set to a carry (special internal relay M8003).

Bits to rotate $=1$

Before rotation: D20•D21 = 851,981

After rotation: D20•D21 = 2,147,909,638

8: DAtA Conversion Instructions

Introduction

Data conversion instructions convert data format among binary, BCD, and ASCII.
The double-word data type has been added to BTOA (BCD to ASCII) and ATOB (ASCII to BCD) instructions. As a result of added data type, BTOA and ATOB instructions can convert double-word data on the upgraded CPU modules with system program version 200 or higher.
The ENCO (encode), DECO (decode), and BCNT (bit count) instructions processes bit device data.
The ALT (alternate output) instruction turns on and off an output each time an input button is pressed.
The CVDT (convert data type) instruction converts data types among W (word), I (integer), D (double word), L (long), and F (float).

The DTDV (data divide), DTCB (data combine), and SWAP (data swap) instructions have been added as new instructions on the upgraded CPU modules with system program version 200 or higher. The DTDV and DTCB instructions convert data between two one-byte data and one word data. The SWAP exchanges upper and lower byte- or word-data of word- or double-word-data respectively.

HTOB (Hex to BCD)

S1 \rightarrow D1
When input is on, the 16 - or 32-bit data designated by $S 1$ is converted into BCD and stored to the destination designated by device D1.
Valid values for the source device are 0 through 9999 for the word data type, and 0 through 99999999 for the double-word data type.

Applicable CPU Modules

FC5A-C10R2/C/D	FC5A-C16R2/C/D	FC5A-C24R2/C/D	FC5A-D16RK1/RS1	FC5A-D32K3/S3	FC5A-D12K1E/S1E
X	X	X	X	X	X

Valid Devices

Device	Function	\mathbf{I}	\mathbf{Q}	\mathbf{M}	\mathbf{R}	\mathbf{T}	\mathbf{C}	\mathbf{D}	Constant	Repeat
S1 (Source 1)	Binary data to convert	X	-							
D1 (Destination 1)	Destination to store conversion results	-	X	\mathbf{A}	X	X	X	X	-	-

For the valid device address range, see pages 6-1 and 6-2 (Basic Vol.).
(Internal relays M0 through M2557 can be designated as D1. Special internal relays cannot be designated as D1.
When T (timer) or C (counter) is used as S1, the timer/counter current value (TC or CC) is read out. When T (timer) or C (counter) is used as D1, the data is written in as a preset value (TP or CP) which can be 0 through 65535.

Valid values for the source device are 0 through 9999 (270Fh) for the word data type, and 0 through 99999999 (5F5 EOFFh) for the double-word data type. Make sure that the source designated by S 1 is within the valid value range. If the source data is out of the valid range, a user program execution error will result, turning on special internal relay M8004 and the ERR LED on the CPU module.

Since the HTOB instruction is executed in each scan while input is on, a pulse input from a SOTU or SOTD instruction should be used as required.

Valid Data Types

W (word)	X
\mathbf{I} (integer)	-
\mathbf{D} (double word)	X
\mathbf{L} (long)	-
F (float)	-

When a bit device such as I (input), Q (output), M (internal relay), or R (shift register) is designated as the source, 16 points (word data type) or 32 points (double-word data type) are used.

When a word device such as T (timer), C (counter), or D (data register) is designated as the source, 1 point (word data type) or 2 points (double-word data type) are used.

Examples: HTOB

- Data Type: Word

- Data Type: Double Word

BTOH (BCD to Hex)

S1 \rightarrow D1
When input is on, the BCD data designated by S 1 is converted into 16- or 32-bit binary data and stored to the destination designated by device D1.

Valid values for the source device are 0 through 9999 (BCD) for the word data type, and 0 through 99999999 (BCD) for the double-word data type.

Applicable CPU Modules

FC5A-C10R2/C/D	FC5A-C16R2/C/D	FC5A-C24R2/C/D	FC5A-D16RK1/RS1			FC5A-D32K3/S3				FC5A-D12K1E/S1E	
X	X	X	X			X				X	
Valid Devices											
Device	Function		I	Q	M	R	T	C	D	Constant	Repeat
S1 (Source 1)	BCD data to convert		X	X	X	X	X	X	X	X	-
D1 (Destination 1)	Destination to store conversion results		-	X	(X	X	X	X	-	-

For the valid device address range, see pages 6-1 and 6-2 (Basic Vol.).
(Internal relays M0 through M2557 can be designated as D1. Special internal relays cannot be designated as D1.
When T (timer) or C (counter) is used as S1, the timer/counter current value (TC or CC) is read out. When T (timer) or C (counter) is used as D1, the data is written in as a preset value (TP or CP) which can be 0 through 65535.

Valid values for the source device are 0 through 9999 (BCD) for the word data type, and 0 through 99999999 (BCD) for the doubleword data type. Make sure that each digit of the source designated by S1 is 0 through 9 . If the source data is out of the valid range, a user program execution error will result, turning on special internal relay M8004 and the ERR LED on the CPU module.

Since the BTOH instruction is executed in each scan while input is on, a pulse input from a SOTU or SOTD instruction should be used as required.

Valid Data Types

\mathbf{W} (word)	X
\mathbf{I} (integer)	-
\mathbf{D} (double word)	X
\mathbf{L} (long)	-
F (float)	-

When a bit device such as I (input), Q (output), M (internal relay), or R (shift register) is designated as the source, 16 points (word data type) or 32 points (double-word data type) are used.

When a word device such as T (timer), C (counter), or D (data register) is designated as the source, 1 point (word data type) or 2 points (double-word data type) are used.

Examples: BTOH

- Data Type: Word

D10 \begin{tabular}{c}
\hline 39321

$(9999 h)$

\longrightarrow D20

9999

$(270 \mathrm{Fh})$
\end{tabular}

- Data Type: Double Word
$\left|-\operatorname{SOTU}-\begin{array}{|cc|}\hline \mathrm{BTOH}(\mathrm{D}) & \text { S1 } \\ \text { D10 } & \text { D1 } \\ & \text { D20 }\end{array}\right|$

HTOA (Hex to ASCII)

S1 \rightarrow D1, D1+1, D1+2, D1+3
When input is on, the 16-bit binary data designated by S 1 is read from the lowest digit as many as the quantity of digits designated by S2, converted into ASCII data, and stored to the destination starting with the device designated by D1.
The quantity of digits to convert can be 1 through 4.
Applicable CPU Modules

FC5A-C10R2/C/D	FC5A-C16R2/C/D	FC5A-C24R2/C/D	FC5A-D16RK1/RS1	FC5A-D32K3/S3	FC5A-D12K1E/S1E
X	X	X	X	X	X

Valid Devices

Device	Function	I	\mathbf{Q}	\mathbf{M}	\mathbf{R}	\mathbf{T}	\mathbf{C}	\mathbf{D}	Constant	Repeat
S1 (Source 1)	Binary data to convert	X								
S2 (Source 2)	Quantity of digits to convert	X	$1-4$	-						
D1 (Destination 1)	Destination to store conversion results	-	-	-	-	-	-	X	-	-

For the valid device address range, see pages 6-1 and 6-2 (Basic Vol.).
When T (timer) or C (counter) is used as S1 or S2, the timer/counter current value (TC or CC) is read out.
The quantity of digits to convert can be 1 through 4. Make sure that the quantity of digits designated by S2 is within the valid range. If the S2 data is out of the valid range, a user program execution error will result, turning on special internal relay M8004 and the ERR LED on the CPU module.
Since the HTOA instruction is executed in each scan while input is on, a pulse input from a SOTU or SOTD instruction should be used as required.

Valid Data Types

W (word)	X
I (integer)	-
\mathbf{D} (double word)	-
\mathbf{L} (long)	-
F (float)	-

When a bit device such as I (input), Q (output), M (internal relay), or R (shift register) is designated as the source, 16 points (word data type) are used.
When a word device such as T (timer), C (counter), or D (data register) is designated as the source or destination, 1 point (word data type) is used.

Examples: HTOA

- Quantity of Digits: 4

$1-$| $\mathrm{STOA}(\mathrm{W})$ | S1 | S2 |
| :---: | :---: | :---: |
| | D10 | 4 |

- Quantity of Digits: 3

- Quantity of Digits: 2

- Quantity of Digits: 1

ATOH (ASCII to Hex)

$\mathrm{S} 1, \mathrm{~S} 1+1, \mathrm{~S} 1+2, \mathrm{~S} 1+3 \rightarrow \mathrm{D} 1$
When input is on, the ASCII data designated by S1 as many as the quantity of digits designated by $S 2$ is converted into 16-bit binary data, and stored to the destination designated by device D1.
Valid values for source data to convert are 30 h to 39 h and 41 h to 46 h .
The quantity of digits to convert can be 1 through 4.

Applicable CPU Modules

FC5A-C10R2/C/D	FC5A-C16R2/C/D	FC5A-C24R2/C/D	FC5A-D16RK1/RS1	FC5A-D32K3/S3	FC5A-D12K1E/S1E
X	X	X	X	X	X

Valid Devices

Device	Function	\mathbf{I}	\mathbf{Q}	\mathbf{M}	\mathbf{R}	\mathbf{T}	\mathbf{C}	\mathbf{D}	Constant	Repeat
S1 (Source 1)	ASCII data to convert	-	-	-	-	-	-	X	-	-
S2 (Source 2)	Quantity of digits to convert	X	$1-4$	-						
D1 (Destination 1)	Destination to store conversion results	-	X	\mathbf{A}	X	X	X	X	-	-

For the valid device address range, see pages 6-1 and 6-2 (Basic Vol.).
A Internal relays M0 through M2557 can be designated as D1. Special internal relays cannot be designated as D1.
When T (timer) or C (counter) is used as S2, the timer/counter current value (TC or CC) is read out. When T (timer) or C (counter) is used as D1, the data is written in as a preset value (TP or CP) which can be 0 through 65535.
Valid values for source S1 data to convert are 30 h to 39 h and 41 h to 46 h . Make sure that the values for each source designated by S1 and the quantity of digits designated by S2 are within the valid range. If the S1 or S2 data is out of the valid range, a user program execution error will result, turning on special internal relay M8004 and the ERR LED on the CPU module.

Since the ATOH instruction is executed in each scan while input is on, a pulse input from a SOTU or SOTD instruction should be used as required.

Valid Data Types

W (word)	X
I (integer)	-
D (double word)	-
L (long)	-
F (float)	-

[^1]
Examples: ATOH

- Quantity of Digits: 4

$1+$| SOTU | STOH(W) | S1 | S2 |
| :---: | :---: | :---: | :---: |
| D10 | 4 | D20 | |

- Quantity of Digits: 3

- Quantity of Digits: 2

- Quantity of Digits: 1

$\left|-\operatorname{SOTU}-\begin{array}{|ccc|}\mathrm{ATOH}(\mathrm{W}) & \text { S1 } & \text { S2 } \\ \text { D10 } & \text { D1 } \\ & \text { D20 }\end{array}\right|$

BTOA (BCD to ASCII)

Word data type:	$\mathrm{S} 1 \rightarrow \mathrm{D} 1, \mathrm{D} 1+1, \mathrm{D} 1+2, \mathrm{D} 1+3, \mathrm{D} 1+4$
Double-word data type:	$\mathrm{S} 1 \cdot \mathrm{~S} 1+1 \rightarrow \mathrm{D} 1, \mathrm{D} 1+1, \mathrm{D} 1+2, \ldots, \mathrm{D} 1+9$

When input is on, the 16- or 32-bit binary data designated by S 1 is converted into BCD, and converted into ASCII data. The data is read from the lowest digit as many as the quantity of digits designated by S 2 . The result is stored to the destination starting with the device designated by D1.

The quantity of digits to convert can be 1 through 5 for the word data type, and 1 through 10 for the double-word data type.

The double-word data type is available on upgraded CPU modules with system program version 200 or higher.

Examples: BTOA(W)

- Quantity of Digits: 5

| SOTU | STOA(W) S1 S2
 D10 5 D20$\|$ |
| :---: | :---: | :---: | :---: |
| | |

- Quantity of Digits: 4

- Quantity of Digits: 3
$\left|-\operatorname{SOTU}+\begin{array}{|ccc|}\hline \mathrm{BTOA}(\mathrm{W}) & \text { S1 } & \text { S2 } \\ \text { D10 } & \text { D1 } \\ 3 & \text { D20 }\end{array}\right|$
- Quantity of Digits: 2

- Quantity of Digits: 1

Examples: BTOA(D)

- Quantity of Digits: 10

$\left.\mathrm{H}_{10} 1 \mathrm{SOTU}-$| $\mathrm{BTOA}(\mathrm{D})$ | S 1 | S 2 |
| :---: | :---: | :---: |
| D 10 | 10 | D 1 |
| D 20 | | | \right\rvert\,

- Quantity of Digits: 6

- Quantity of Digits: 3

ATOB (ASCII to BCD)

Word data type:	$\mathrm{S} 1, \mathrm{~S} 1+1, \mathrm{~S} 1+2, \mathrm{~S} 1+3, \mathrm{~S} 1+4 \rightarrow \mathrm{D} 1$
Double-word data type:	$\mathrm{S} 1, \mathrm{~S} 1+1, \mathrm{~S} 1+2, \ldots, \mathrm{~S} 1+9 \rightarrow \mathrm{D} 1 \cdot \mathrm{D} 1+1$

When input is on, the ASCII data designated by S1 as many as the quantity of digits designated by $S 2$ is converted into BCD, and converted into 16 - or 32 -bit binary data. The result is stored to the destination designated by device D1.

Valid values for source data to convert are 30h through 39h.
The quantity of digits to convert can be 1 through 5 for the word data type, and 1 through 10 for the double-word data type.The double-word data type is available on upgraded CPU modules with system program version 200 or higher.

Applicable CPU Modules

FC5A-C10R2/C/D	FC5A-C16R2/C/D	FC5A-C24R2/C/D	FC5A-D16RK1/RS1	FC5A-D32K3/S3	FC5A-D12K1E/S1E
X	X	X	X	X	X

Valid Devices

Device	Function	I	\mathbf{Q}	\mathbf{M}	\mathbf{R}	\mathbf{T}	C	D	Constant	Repeat
S1 (Source 1)	ASCII data to convert	-	-	-	-	-	-	X	-	-
S2 (Source 2)	Quantity of digits to convert	X	$1-5,1-10$	-						
D1 (Destination 1)	Destination to store conversion results	-	X	\mathbf{A}	X	X	X	X	-	-

For the valid device address range, see pages 6-1 and 6-2 (Basic Vol.).

- Special internal relays cannot be designated as D1.

When T (timer) or C (counter) is used as $S 2$, the timer/counter current value (TC or CC) is read out. When T (timer) or C (counter) is used as D1, the data is written in as a preset value (TP or CP).

Valid values for source S1 data to convert are 30 h through 39 . The quantity of digits to convert can be 1 through 5 for the word data type, and 1 through 10 for the double-word data type. Make sure that the values for each source designated by S1 and the quantity of digits designated by $S 2$ are within the valid range. If the $S 1$ or S2 data is out of the valid range, a user program execution error will result, turning on special internal relay M8004 and the ERR LED on the CPU module.
Make sure that the last source data determined by $\mathrm{S} 1+\mathrm{S} 2-1$ is within the valid device range. If the derived source device is out of the valid device range, a user program execution error will result, turning on special internal relay M8004 and ERROR LED on the CPU module.

Since the ATOB instruction is executed in each scan while input is on, a pulse input from a SOTU or SOTD instruction should be used as required.

Valid Data Types

\mathbf{W} (word)	X
\mathbf{I} (integer)	-
\mathbf{D} (double word)	X
\mathbf{L} (long)	-
F (float)	-

When a bit device such as I (input), Q (output), M (internal relay), or R (shift register) is designated as the source or destination, 16 points (word data type) or 32 points (double-word data type) are used.

When a word device such as T (timer), C (counter), or D (data register) is designated as the source or destination, 1 point (word data type) or 2 points (double-word data type) are used.

Examples: ATOB(W)

- Quantity of Digits: 5
$\left.\mathrm{H}_{10} 1 \mathrm{SOTU}-\begin{array}{|ccc|}\mathrm{ATOB}(\mathrm{W}) & \mathrm{S} 1 & \mathrm{~S} 2 \\ \mathrm{D} 10 & 5 & \mathrm{D} 1 \\ & \mathrm{D} 20\end{array} \right\rvert\,$
- Quantity of Digits: 4

- Quantity of Digits: 3

SOTU	STOB(W)	S1	S2
D10	D1		
	D20		

- Quantity of Digits: 2

- Quantity of Digits: 1

Examples: ATOB(D)

- Quantity of Digits: 10

SOTU	STOB(D)	S1	S2
D10	10	D1	
	D20		

- Quantity of Digits: 6

- Quantity of Digits: 3

ENCO (Encode)

When input is on, a bit which is on is sought. The search begins at $S 1$ until the first point which is set (on) is located. The quantity of points from S1 to the first set point (offset) is stored to the destination designated by device D1.
If no point is on in the searched area, 65535 is stored to D1.

Applicable CPU Modules

FC5A-C10R2/C/D	FC5A-C16R2/C/D	FC5A-C24R2/C/D	FC5A-D16RK1/RS1	FC5A-D32K3/S3	FC5A-D12K1E/S1E
X	X	X	X	X	X

Valid Devices

Device	Function	\mathbf{I}	\mathbf{Q}	\mathbf{M}	\mathbf{R}	\mathbf{T}	\mathbf{C}	\mathbf{D}	Constant	Repeat
S1 (Source 1)	First bit to start search	X	X	X	X	-	-	X	-	
D1 (Destination 1)	Destination to store search results	-	X	\mathbf{A}	\times	-	-	X	-	-
Bits	Quantity of bits searched	-	-	-	-	-	-	-	$1-256$	-

For the valid device address range, see pages 6-1 and 6-2 (Basic Vol.).
A Internal relays M0 through M2557 can be designated as D1. Special internal relays cannot be designated as D1.
Valid values for Bits to designate the quantity of bits searched are 1 through 256. Make sure that the search area designated by S1 plus Bits is within the valid value range. If the source data is out of the valid range, a user program execution error will result, turning on special internal relay M8004 and the ERR LED on the CPU module.
Since the ENCO instruction is executed in each scan while input is on, a pulse input from a SOTU or SOTD instruction should be used as required.

Examples: ENCO

When input IO is on, a bit which is on is sought in 64 bits starting at internal relay M4 designated by device S1.
Since internal relay M30 is the first point that is on, the offset from the first search point is 20, and 20 is stored to data register D100 designated by device D1.

When input I1 is on, a bit which is on is sought in 64 bits starting at bit 0 of data register D10 designated by device S1.
Since bit 8 of data register D11 is the first point that is on, the offset from the first search point is 24 , and 24 is stored to data register D100 designated by device D1.

DECO (Decode)

When input is on, the values contained in devices designated by S1 and D1 are added to determine the destination, and the bit so determined is turned on.

Applicable CPU Modules

FC5A-C10R2/C/D	FC5A-C16R2/C/D	FC5A-C24R2/C/D	FC5A-D16RK1/RS1	FC5A-D32K3/S3	FC5A-D12K1E/S1E
X	X	X	X	X	X

Valid Devices

Device	Function	\mathbf{I}	\mathbf{Q}	\mathbf{M}	\mathbf{R}	\mathbf{T}	\mathbf{C}	\mathbf{D}	Constant	Repeat
S1 (Source 1)	Offset	X	X	X	X	-	-	X	$0-255$	-
D1 (Destination 1)	First bit to count offset	-	X	\mathbf{A}	X	-	-	X	-	-

For the valid device address range, see pages 6-1 and 6-2 (Basic Vol.).
(Internal relays M0 through M2557 can be designated as D1. Special internal relays cannot be designated as D1.
Valid values for the offset designated by source device S1 are 0 through 255. Make sure that the offset designated by S1 and the last bit of destination data determined by the sum of S1 and D1 are within the valid value range. If the offset or destination data is out of the valid range, a user program execution error will result, turning on special internal relay M8004 and the ERR LED on the CPU module.
Since the DECO instruction is executed in each scan while input is on, a pulse input from a SOTU or SOTD instruction should be used as required.

Examples: DECO

First bit

When input I 1 is on, the destination bit is determined by adding the value contained in data register D10 designated by device S1 to data register D30 designated by destination device D1.
Since 39th bit from data register D30 bit 0 is data register D32 bit 7, the bit so determined is turned on.

When input 10 is on, the destination bit is determined by adding the value contained in data register D20 designated by device S1 to internal relay M104 designated by destination device D1.

Since 19th bit from internal relay M104 is internal relay M127, the bit so determined is turned on.

ON

BCNT (Bit Count)

When input is on, bits which are on are sought in an array of consecutive bits starting at the point designated by source device S1. Source device S2 designates the quantity of bits searched. The quantity of bits which are on is stored to the destination designated by device D1.

Applicable CPU Modules

FC5A-C10R2/C/D	FC5A-C16R2/C/D	FC5A-C24R2/C/D	FC5A-D16RK1/RS1	FC5A-D32K3/S3	FC5A-D12K1E/S1E
X	X	X	X	X	X

Valid Devices

Device	Function	I	\mathbf{Q}	\mathbf{M}	\mathbf{R}	\mathbf{T}	C	D	Constant	Repeat
S1 (Source 1)	First bit to start search	X	X	X	X	-	-	X	-	-
S2 (Source 2)	Quantity of bits searched	X	$1-256$	-						
D1 (Destination 1)	Destination to store quantity of ON bits	-	X	\mathbf{A}	X	X	X	X	-	-

For the valid device address range, see pages 6-1 and 6-2 (Basic Vol.).
A Internal relays M0 through M2557 can be designated as D1. Special internal relays cannot be designated as D1.
When T (timer) or C (counter) is used as S2, the timer/counter current value (TC or CC) is read out. When T (timer) or C (counter) is used as D1, the data is written in as a preset value (TP or CP) which can be 0 through 65535.
Valid values for S2 to designate the quantity of bits searched are 1 through 256. Make sure that the search area designated by S1 plus S 2 is within the valid value range. If the source data is out of the valid range, a user program execution error will result, turning on special internal relay M8004 and the ERR LED on the CPU module.
Since the BCNT instruction is executed in each scan while input is on, a pulse input from a SOTU or SOTD instruction should be used as required.

Examples: BCNT

When input is on, bits which are on are sought in an array of 64 bits starting at internal relay M4 designated by source device S1.
Since 3 bits are on in the searched area, the quantity is stored to data register D100 designated by destination device D1.

When input 10 is on, bits which are on are sought in 60 bits starting at bit 0 of data register D10 designated by device S1.

Since 2 bits are on among the 60 bits, 2 is stored to data register D100 designated by device D1.

ALT (Alternate Output)

When input is turned on, output, internal relay, or shift register bit designated by D1 is turned on and remains on after the input is turned off.

When input is turned on again, the designated output, internal relay, or shift register bit is turned off.

The ALT instruction must be used with a SOTU or SOTD instruction, otherwise the designated output, internal relay, or shift register bit repeats to turn on and off in each scan.

Applicable CPU Modules

FC5A-C10R2/C/D	FC5A-C16R2/C/D	FC5A-C24R2/C/D	FC5A-D16RK1/RS1	FC5A-D32K3/S3	FC5A-D12K1E/S1E
X	X	X	X	X	X

Valid Devices

Device	Function	\mathbf{I}	\mathbf{Q}	\mathbf{M}	\mathbf{R}	\mathbf{T}	\mathbf{C}	\mathbf{D}	Constant	Repeat
D1 (Destination 1)	Bit to turn on and off	-	X	X	X	-	-	-	-	-

For the valid device address range, see pages 6-1 and 6-2 (Basic Vol.).
Since the ALT instruction is executed in each scan while input is on, a pulse input from a SOTU or SOTD instruction must be used.

Example: ALT

When input $I 0$ is turned on, output Q0 designated by device D1 is turned on and remains after input 10 is turned off.
When input IO is turned on again, output Q0 is turned off.

CVDT (Convert Data Type)

S1 \rightarrow D1
When input is on, the data type of the 16 - or 32 -bit data designated by S 1 is converted and stored to the destination designated by device D1.

Data types can be designated for the source and destination, separately.

Data Type	W, I	D, L, F
Source	S1	S1•S1+1
Destination	D1	D1•D1+1

When the same data type is designated for both source and destination, the CVDT instruction has the same function as the MOV instruction.
Unless F (float) data type is selected for both source and destination, only the integral number is moved, omitting the fraction.
When the source data exceeds the range of destination data type, the destination stores a value closest to the source data within the destination data type.

Applicable CPU Modules

FC5A-C10R2/C/D	FC5A-C16R2/C/D	FC5A-C24R2/C/D	FC5A-D16RK1/RS1			FC5A-D32K3/S3				FC5A-D12K1E/S1E	
X	X	X	X			X				X	
Valid Devices											
Device	Function		I	Q	M	R	T	C	D	Constant	Repeat
S1 (Source 1)	First device address to convert data type		X	X	X	X	X	X	X	X	1-99
D1 (Destination 1)	First device address to store converted data		-	X	-	X	X	X	X	-	1-99

For the valid device address range, see pages 6-1 and 6-2 (Basic Vol.).
A Internal relays M0 through M2557 can be designated as D1. Special internal relays cannot be designated as D1.
When T (timer) or C (counter) is used as S1, the timer/counter current value (TC or CC) is read out. When T (timer) or C (counter) is used as D1, the data is written in as a preset value (TP or CP) which can be 0 through 65535.
When F (float) data type is selected, only data register and constant can be designated as S1 and only data register can be designated as D1.
When F (float) data type is selected and S1 or D1 does not comply with the normal floating-point format, a user program execution error will result, turning on special internal relay M8004 and ERR LED on the CPU module.

Valid Data Types

W (word)	X
I (integer)	X
D (double word)	X
L (long)	X
F (float)	X

When a bit device such as I (input), Q (output), M (internal relay), or R (shift register) is designated as the source or destination, 16 points (word or integer data type) or 32 points (double-word, long, or float data type) are used. When repeat is designated for a bit device, the quantity of device bits increases in 16 - or 32 -point increments.
When a word device such as T (timer), C (counter), or D (data register) is designated as the source or destination, 1 point (word or integer data type) or 2 points (double-word, long, or float data type) are used. When repeat is designated for a word device, the quantity of device words increases in 1- or 2point increments.

Examples: CVDT

- Data Type: Either S1 or D1 is not F (float)

Unless F (float) data type is selected for both source and destination, only the integral number is moved, omitting the fraction.

Device	Data Type	Value
Source	F	3.141593
Destination	W	3

When input 10 is turned on, 3 is stored to data register D2.

- Data Type: S1 has a larger data range than D1

When the source data exceeds the range of destination data type, the destination stores a value closest to the source data within the destination data type.

Device	Data Type	Value
Source	D	4294967295
Destination	W	65535

When input 10 is turned on, 65535 is stored to data register D2.

S1	D1
DO -D1	
4294967295	
	D2 65535

DTDV (Data Divide)

S1 \rightarrow D1, D1+1
When input is on, the 16-bit binary data designated by S 1 is divided into upper and lower bytes. The upper byte data is stored to the destination designated by device D1. The lower byte data is stored to the device next to D1.

This instruction is available on upgraded CPU modules with system program version 200 or higher.

Applicable CPU Modules

FC5A-C10R2/C/D	FC5A-C16R2/C/D	FC5A-C24R2/C/D	FC5A-D16RK1/RS1	FC5A-D32K3/S3	FC5A-D12K1E/S1E
X	X	X	X	X	X

Valid Devices

Device	Function	I	\mathbf{Q}	\mathbf{M}	\mathbf{R}	\mathbf{T}	\mathbf{C}	\mathbf{D}	Constant	Repeat
S1 (Source 1)	Binary data to divide	X	X	X	X	X	X	X	X	-
D1 (Destination 1)	Destination to store results	-	-	-	-	-	-	X	-	

For the valid device address range, see pages 6-1 and 6-2 (Basic Vol.).
When T (timer) or C (counter) is used as S1, the timer/counter current value (TC or CC) is read out.
Destination device D1 uses 2 data registers starting with the device designated by D1.
Since the DTDV instruction is executed in each scan while input is on, a pulse input from a SOTU or SOTD instruction should be used as required.

Valid Data Types

W (word)	X
I (integer)	-
D (double word)	-
L (long)	-
F (float)	-

When a bit device such as I (input), Q (output), M (internal relay), or R (shift register) is designated as the source, 16 points (word data type) are used.

When a word device such as T (timer), C (counter), or D (data register) is designated as the source or destination, 1 point (word data type) is used.

Example: DTDV

DTCB (Data Combine)

S1, S1+1 \rightarrow D1

When input is on, the lower-byte data is read out from 2 consecutive sources starting with device designated by S 1 and combined to make 16 -bit data. The lower byte data from the first source device is moved to the upper byte of the destination designated by device D1, and the lower byte data from the next source device is moved to the lower byte of the destination.

This instruction is available on upgraded CPU modules with system program version 200 or higher.

Applicable CPU Modules

FC5A-C10R2/C/D	FC5A-C16R2/C/D	FC5A-C24R2/C/D	FC5A-D16RK1/RS1	FC5A-D32K3/S3	FC5A-D12K1E/S1E
X	X	X	X	X	X

Valid Devices

Device	Function	\mathbf{I}	\mathbf{Q}	\mathbf{M}	\mathbf{R}	\mathbf{T}	\mathbf{C}	\mathbf{D}	Constant	Repeat
S1 (Source 1)	Binary data to combine	-	-	-	-	-	-	X	-	-
D1 (Destination 1)	Destination to store results	-	X	\mathbf{A}	X	X	X	X	-	-

For the valid device address range, see pages 6-1 and 6-2 (Basic Vol.).

- Special internal relays cannot be designated as D1.

When T (timer) or C (counter) is used as D1, the data is written in as a preset value (TP or CP) which can be 0 through 65535.
Source device S 1 uses 2 data registers starting with the device designated by S1.
Since the DTCB instruction is executed in each scan while input is on, a pulse input from a SOTU or SOTD instruction should be used as required.

Valid Data Types

\mathbf{W} (word)	X
\mathbf{I} (integer)	-
\mathbf{D} (double word)	-
\mathbf{L} (long)	-
\mathbf{F} (float)	-

When a bit device such as I (input), Q (output), M (internal relay), or R (shift register) is designated as the destination, 16 points (word data type) are used.
When a word device such as T (timer), C (counter), or D (data register) is designated as the source or destination, 1 point (word data type) is used.

Example: DTCB

SWAP (Data Swap)

S1 \rightarrow D1
When input is on, upper and lower byte- or word-data of a word- or double-word-data designated by S1 are exchanged, and the result is stored to destination designated by D1.
This instruction is available on upgraded CPU modules with system program version 200 or higher.

Applicable CPU Modules

FC5A-C10R2/C/D	FC5A-C16R2/C/D	FC5A-C24R2/C/D	FC5A-D16RK1/RS1	FC5A-D32K3/S3	FC5A-D12K1E/S1E
X	X	X	X	X	X

Valid Devices

Device	Function	\mathbf{I}	\mathbf{Q}	\mathbf{M}	\mathbf{R}	\mathbf{T}	\mathbf{C}	\mathbf{D}	Constant	Repeat
S1 (Source 1)	Binary data to swap	-	-	-	-	-	-	X	-	$1-99$
D1 (Destination 1)	Destination to store conversion result	-	-	-	-	-	-	X	-	$1-99$

For the valid device address range, see pages 6-1 and 6-2 (Basic Vol.).
Since the SWAP instruction is executed in each scan while input is on, a pulse input from a SOTU or SOTD instruction should be used as required.

Valid Data Types

W (word)	X
\mathbf{I} (integer)	-
D (double word)	X
\mathbf{L} (long)	-
F (float)	-

When a D (data register) is designated as the source or destination, 1 point (word data type) or 2 points (double-word data type) are used. When repeat is designated, the quantity of device words increases in 1- or 2-point increments.

Examples: SWAP

- Data Type: W (word)

When input 10 is turned on, upper- and lower-byte data of the 16-bit data in data register D10 designated by source device S1 are exchanged, and the result is stored to data register D20 designated by destination device D1.

- Data Type: D (double-word)

When input I1 is turned on, upper- and lower-word data of the 32-bit data in data registers D10 and D11 designated by source device S1 are exchanged, and the result is stored to data registers D20 and D21 designated by destination device D1.

Before Execution		After Execution	
D10	100	D20	200
D11	200	D21	100

9: Week Programmer Instructions

Introduction

WKTIM instructions can be used as many as required to turn on and off designated outputs and internal relays at predetermined times and days of the week.

Once the internal calendar/clock is set, the WKTIM instruction compares the predetermined time with the clock data in the clock cartridge. When the preset time is reached, internal relay or output designated as destination device is turned on or off as scheduled. For setting the calendar/clock, see page 9-6.

For the specifications of the clock cartridge, see page 2-95 (Basic Vol.).

WKTIM (Week Timer)

When input is on, the WKTIM compares the S1 and S2 preset data with the current day and time.

When the current day and time reach the presets, an output or internal relay designated by device D1 is turned on, depending on the week table output control designated by MODE.

Applicable CPU Modules

FC5A-C10R2/C/D	FC5A-C16R2/C/D	FC5A-C24R2/C/D	FC5A-D16RK1/RS1	FC5A-D32K3/S3	FC5A-D12K1E/S1E
X	X	X	X	X	X

Valid Devices

Device	Function	\mathbf{I}	\mathbf{Q}	\mathbf{M}	\mathbf{R}	\mathbf{T}	\mathbf{C}	\mathbf{D}	Constant	Repeat
MODE	Week table output control	-	-	-	-	-	-	-	$0-2$	-
S1 (Source 1)	Day of week comparison data	-	-	-	-	-	-	X	$0-127$	-
S2 (Source 2)	Hour/minute comparison data to turn on	-	-	-	-	-	-	X	$0-2359$	-
S3 (Source 3)	Hour/minute comparison data to turn off	-	-	-	-	-	-	X	$0-2359$	-
D1 (Destination 1)	Comparison ON output	-	X	\mathbf{A}	-	-	-	-	-	-

For the valid device address range, see pages 6-1 and 6-2 (Basic Vol.).
(Internal relays M0 through M2557 can be designated as D1. Special internal relays cannot be designated as D1.

MODE — Week table output control (0 through 2)

0: Disable the week table
When the current day and time reach the presets for $S 1, S 2$, and $S 3$, the designated output or internal relay is turned on or turned off. Set 0 for MODE when the WKTBL is not used; the WKTBL instruction is ignored even if it is programmed.

1: Additional days in the week table

When the current time reaches the hour/minute comparison data set for S2 or S3 on the special day programmed in the WKTBL, the designated output or internal relay is turned on (S2) or turned off (S3).

2: \quad Skip days in the week table

On the special day programmed in the WKTBL, the designated output or internal relay is not turned on or off, even when the current day and time reach the presets for S1, S2, and S3.

Note: When 1 or 2 is set for MODE, program special days in the week table using the WKTBL instruction, followed by the WKTIM instruction. If the WKTBL instruction is not programmed when 1 or 2 is set for MODE in the WKTIM instruction, a user program execution error will result, turning on special internal relay M8004 and the ERR LED on the CPU module. The same error also occurs if the WKTIM instruction is executed before the WKTBL instruction.

S1 - Day of week comparison data (0 through 127)

Specify the days of week to turn on the output or internal relay designated by D1.

Day of Week	Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
Value	1	2	4	8	16	32	64

Designate the total of the values as device S 1 to turn on the output or internal relay.
Example: To turn on the output on Mondays through Fridays, designate 62 as S1 because $2+4+8+16+32=62$.

S2 - Hour/minute comparison data to turn on
 S3 - Hour/minute comparison data to turn off

Specify the hours and minutes to turn on (S2) or to turn off (S3) the output or internal relay designated by D1.

Hour	Minute	Disable Comparison
00 through 23	00 through 59	10000

Example: To turn on the output or internal relay at 8:30 a.m. using the WKTIM instruction, designate 830 as S2. To turn off the output or internal relay at 5:05 p.m., designate 1705 as S3.
When 10000 is set to hour/minute comparison data, the comparison data is ignored. For example, if 10000 is set to the hour/ minute comparison data to turn off (S3), the WKTIM instruction compares only the hour/minute comparison data to turn on (S2).
When the hour/minute comparison data to turn on (S2) is larger than the hour/minute comparison data to turn off (S3), the comparison ON output (D1) turns on at S2 on the day designated by S1, remains on across 0 a.m., and turns off at S3 on the next day. For example, if S2 is 2300, S3 is 100, and Monday is included in S1, then the output designated by D1 turns on at 23 p.m. on Monday and turns off at 1 a.m. on Tuesday.

Make sure that the values set for MODE, $\mathrm{S} 1, \mathrm{~S} 2$, and S 3 are within the valid ranges. If any data is over the valid value, a user program execution error will result, turning on special internal relay M8004 and the ERR LED on the CPU module.

WKTBL (Week Table)

S1, S2, S3, ... , SN \rightarrow Week Table ($\mathrm{N} \leq 20$)
When input is on, N blocks of special month/day data in devices designated by S1, S2, S3, ... , SN are set to the week table.
The quantity of special days can be up to 20 .
The special days stored in the week table are used to add or skip days to turn on or off the comparison outputs programmed in subsequent WKTIM instructions.
The WKTBL must precede the WKTIM instructions.

Applicable CPU Modules

FC5A-C10R2/C/D	FC5A-C16R2/C/D	FC5A-C24R2/C/D	FC5A-D16RK1/RS1	FC5A-D32K3/S3	FC5A-D12K1E/S1E
X	X	X	X	X	X

Valid Devices

Device	Function	\mathbf{I}	\mathbf{Q}	\mathbf{M}	\mathbf{R}	\mathbf{T}	\mathbf{C}	\mathbf{D}	Constant	Repeat
S1 (Source 1)	Special month/day data	-	-	-	-	-	-	X	$101-1231$	-

For the valid device address range, see pages 6-1 and 6-2 (Basic Vol.).

S1 through SN - Special month/day data

Specify the months and days to add or skip days to turn on or off the comparison outputs programmed in WKTIM instructions.

Month	Day
01 through 12	01 through 31

Example: To set July 4 as a special day, designate 704 as S1.
Make sure that the values set for $S 1$ through $S N$ are within the valid ranges. If any data is over the valid value, a user program execution error will result, turning on special internal relay M8004 and the ERR LED on the CPU module.

Examples: WKTIM and WKTBL

- Without Special Days (MODE = 0)

This example is the basic program for week programmer application without using the WKTBL (week table) instruction. While the CPU is running, the WKTIM compares the S1, S2, and S3 preset data with the current day and time.

When the current day and time reach the presets, an output designated by device D1 is turned on and off.

M8125 is the in-operation output special internal relay.
S1 (62) specifies Monday through Friday.
The WKTIM turns on output Q0 at 8:30 and turns off output Q0 at 17:15 on Monday through Friday.

- With Additional Days in the Week Table (MODE = 1)

When the current time reaches the hour/minute preset time on the special days programmed in the WKTBL, the designated output is turned on or turned off. In addition, the designated output is turned on and off every week as designated by device S1 of WKTIM.

In normal execution, when the current day and time coincide with the preset day (S1) and time (S2 or S3) of the WKTIM, the designated output is turned on or off. Execution on the special days has precedence over execution on normal days.
This example demonstrates operation on special days in addition to regular weekends. The output is turned on from 10:30 a.m. to 11:10 p.m. on every Saturday and Sunday. Without regard to the day of week, the output is also turned on December 31 through January 3.

M8120 is the initialize pulse special internal relay.
WKTBL designates Dec. 31 to Jan. 3 as special days.
MODE (1) adds special days.
S1 (65) specifies Saturday and Sunday.
WKTIM turns on output Q0 at 10:30 and turns off at 23:10 on every
Saturday, Sunday, and special days.

- With Skip Days in the Week Table (MODE =2)

On the special days programmed in the WKTBL, the designated output is not turned on or off, while the designated output is turned on and off every week as designated by device S1 of WKTIM.

In normal execution, when the current day and time coincide with the preset day (S1) and time (S2 or S3), the designated output is turned on or off. Execution on the special days has precedence over execution on normal days.
This example demonstrates operation aborted on special days. The output is turned on from 10:00 a.m. to 8:00 p.m. on every Monday through Friday, but is not turned on from May 2 through May 5.

WKTBL designates May 2 to May 5 as special days.
MODE (2) skips special days.
S1 (62) specifies Monday to Friday.
WKTIM turns on output Q0 at 10:00 and turns off at 20:00 on every
Monday through Friday except on special days.

- Keep Output ON across 0 a.m.

When the hour/minute comparison data to turn on (S2) is larger than the hour/minute comparison data to turn off (S3), the comparison ON output (D1) turns on at S2 on the day designated by S1, remains on across 0 a.m., and turns off at S3 on the next day. This example demonstrates a program to keep the designated output on across 0 a.m. and turn off the output on the next day.

M8125 is the in-operation output special internal relay.
S1 (38) specifies Monday, Tuesday, and Friday.
The WKTIM turns on output Q0 at 20:00 on Monday, Tuesday, and Friday, and turns off output Q0 at 6:00 on the next day.

- Keep Output ON for Several Days

Multiple WKTIM instructions can be used to keep an output on for more than 24 hours. This example demonstrates a program to keep the designated output on from 8 a.m on every Monday to 7 p.m. on every Friday.

M8125 is the in-operation output special internal relay.
S1 (2) specifies Monday.
S1 (28) specifies Tuesday, Wednesday, and Thursday.
S1 (32) specifies Friday.
S2 (10000) and S3 (10000) disable comparison of hour and minute data.

While internal relay $\mathrm{M} 0, \mathrm{M} 1$, or M 2 is on, output Q 0 remains on.

Using Clock Cartridge

When using the week programmer instructions, you have to install a clock cartridge into the CPU module and enable to use the clock cartridge using WindLDR as follows:

1. From the WindLDR menu bar, select Configuration > Cartridges and Modules.

The Function Area Settings dialog box for Cartridges and Modules appears.

MicroSmart Function Area Settings			?
Run/Stop Control Memory Backup Input Configuration Communication Ports Key Matrix	.: Configure the cartridges and expansion modules.		
	Clock Cartridge		
	Use Clock CartridgeEnable Clock Cartridge Adjustment		
Cartridges \& Modules	Adjustment value ($0-127$):		
Device Settings Program Protection Self Diagnostic	Memory Cartridge		
	\square Enable Memory Cartridge Download		
	AS-Interface		
	(Use AS-Interface Master Module		

2. Click the check box to use the clock cartridge.
3. Click the OK button.
4. Download the user program to the CPU module, and turn off and on the power to the CPU module.

Caution

- After removing the clock cartridge, do not run the user program with the Function Area Settings programmed to use the clock cartridge, otherwise clock IC error occurs, turning on the ERR LED on the CPU module. Special data register D8005 (general error code) stores 400h (clock IC error).

Setting Calendar/Clock Using WindLDR

Before using the clock cartridge for the first time, the calendar/clock data in the clock cartridge must be set using WindLDR or executing a user program to transfer correct calendar/clock data from special data registers allocated to the calendar/clock. Once the calendar/clock data is stored, the data is held by the backup battery in the clock cartridge.

1. Select Online from the WindLDR menu bar, then select Monitor. The screen display changes to the monitor window.
2. From the PLC menu, select Status. The MicroSmart PLC Status dialog box is displayed. The current calendar/clock data is read out from the clock cartridge and displayed in the Calendar field.
3. Click the Change button for the Calendar. The Set Calendar and Time dialog box comes up with the date and time values read from the computer internal clock.

4. Click the Down Arrow button on the right of Calendar, then a calendar is displayed where you can change the year, month, and date. Enter or select new values.
5. To change hours and minutes, click in the Time box, and type a new value or use the up/down keys. When new values are entered, click the OK button to transfer the new values to the clock cartridge.

Setting Calendar/Clock Using a User Program

Another way of setting the calendar/clock data is to store the values in special data registers dedicated to the calendar and clock and to turn on special internal relay M8016, M8017, or M8020. Data registers D8015 through D8021 do not hold the current values of the calendar/clock data but hold unknown values before executing a user program.

Special Data Registers for Calendar/Clock Data

Data Register No.	Data	Value	Read/Write	Updated
D8008	Year (current data)	0 to 99	Read only	500 ms or one scan time whichever is larger
D8009	Month (current data)	1 to 12		
D8010	Day (current data)	1 to 31		
D8011	Day of week (current data)	0 to 6 (Note)		
D8012	Hour (current data)	0 to 23		
D8013	Minute (current data)	0 to 59		
D8014	Second (current data)	0 to 59		
D8015	Year (new data)	0 to 99	Write only	Not updated
D8016	Month (new data)	1 to 12		
D8017	Day (new data)	1 to 31		
D8018	Day of week (new data)	0 to 6 (Note)		
D8019	Hour (new data)	0 to 23		
D8020	Minute (new data)	0 to 59		
D8021	Second (new data)	0 to 59		

Note: The day of week value is assigned for both current and new data as follows:

$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$
Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday

Special Internal Relays for Calendar/Clock Data

M8016	Calendar Data Write Flag	When M8016 is turned on, data in data registers D8015 through D8018 (calendar new data) are set to the clock cartridge installed on the CPU module.
$\mathbf{M 8 0 1 7}$	Clock Data Write Flag	When M8017 is turned on, data in data registers D8019 through D8021 (clock new data) are set to the clock cartridge installed on the CPU module.
$\mathbf{M 8 0 2 0}$	Calendar/Clock Data Write Flag	When M8020 is turned on, data in data registers D8015 through D8021 (calendar/clock new data) are set to the clock cartridge installed on the CPU module.

Example: Setting Calendar/Clock Data

This example demonstrates how to set calendar/clock data using a ladder program. After storing new calendar/clock data into data registers D8015 through D8021, special internal relay M8020 (calendar/clock data write flag) must be turned on to set the new calendar/clock data to the clock cartridge.

M8120 is the initialize pulse special internal relay.
When the CPU starts, seven MOV(W) instructions store calendar/clock data to data registers DO through D6.

When input 10 is turned on, new calendar data (year, month, day, and day of week) are moved to data registers D8015 through D8018, and internal relay M0 is turned on for 1 scan time.

When input I1 is turned on, new clock data (hour, minute, and second) are moved to data registers D8019 through D8021, and internal relay M1 is turned on for 1 scan time.

When either M0 or M1 is turned on, calendar/clock data write flag special internal relay M8020 is turned on to set the new calendar/clock data to the clock cartridge.

M8125 is the in-operation output special internal relay.
While the CPU is running, the MOV(W) moves current calendar/clock data to data registers D10 through D16.

Adjusting Clock Using a User Program

Special internal relay M8021 (clock data adjust flag) is provided for adjusting the clock data. When M8021 is turned on, the clock is adjusted with respect to seconds. If seconds are between 0 and 29 for current time, adjustment for seconds will be set to 0 and minutes remain the same. If seconds are between 30 and 59 for current time, adjustment for seconds will be set to 0 and minutes are incremented one. M8021 is useful for precise timing which starts at zero seconds.

Example: Adjusting Calendar/Clock Data to 0 Seconds

When input 12 is turned on, clock data adjust flag special internal relay M8021 is turned on and the clock is adjusted with respect to seconds.

Adjusting Clock Cartridge Accuracy

The optional clock cartridge (FC4A-PT1) has an initial monthly error of ± 2 minutes at $25^{\circ} \mathrm{C}$. The accuracy of the clock cartridge can be improved to ± 30 seconds using Enable Clock Cartridge Adjustment in the Function Area Settings.
Before starting the clock cartridge adjustment, confirm the adjustment value indicated on the clock cartridge. This value is an adjustment parameter measured on each clock cartridge at factory before shipment.

Adjustment Value
The adjustment value indicated on the clock cartridge was measured at $25^{\circ} \mathrm{C}$ to achieve the best accuracy. When using the clock cartridge at other temperatures, the clock cartridge accuracy may be impaired.

Programming WindLDR

1. From the WindLDR menu bar, select Configuration > Cartridges and Modules.

The Function Area Settings dialog box for Cartridges and Modules appears.

WicroSmart Function Area Settings				?
Run/Stop Control Memory Backup Input Configuration Communication Ports Key Matrix	: Configure the cartridges and expansion modules.			
	Clock Cartridge			
	V Use Clock Cartridge			
	V Enable Clock Cartridge Adjustment			
Cartridges \& Modules	Adjustment value (0-127): $60 \underset{\square}{\square}$			
Device Settings Program Protection Self Diagnostic	Memory Cartridge			
	\square Enable Memory Cartridge Download			
	AS-Interface			
	(Use AS-Interface Master Module			

2. Click the check box to enable the clock cartridge adjustment, and type the adjustment value found on the clock cartridge in the Adjustment Value field.
3. Click the OK button.
4. Download the user program to the CPU module, and turn off and on the power to the CPU module.

Clock Cartridge Backup Duration

The clock cartridge data is backed up by a lithium battery in the clock cartridge and held for approximately 30 days at $25^{\circ} \mathrm{C}$. If the CPU module is not powered up for a period longer than the backup duration, the clock data is initialized to the following values.

Calendar:	00/01/01
Time:	0:00:00 AM

10: Interface Instructions

Introduction

The DISP (display) instruction is used to display 1 through 5 digits of timer/counter current values and data register data on 7-segment display units.

The DGRD (digital read) instruction is used to read 1 through 5 digits of digital switch settings to a data register. This instruction is useful to change preset values for timers and counters using digital switches.

DISP (Display)

When input is on, data designated by source device S1 is set to outputs or internal relays designated by device Q . This instruction is used to output 7-segment data to display units.
Eight DISP instructions can be used in a user program.
Display data can be 0 through 65535 (FFFFh).

Applicable CPU Modules

FC5A-C10R2/C/D	FC5A-C16R2/C/D	FC5A-C24R2/C/D	FC5A-D16RK1/RS1	FC5A-D32K3/S3	FC5A-D12K1E/S1E
-	-	X	X	X	X

Note: The DISP instruction requires transistor output terminals. When using all-in-one 24-I/O type CPU module FC5A-C24R2, connect a transistor output module.

Valid Devices

Device	Function	I	\mathbf{Q}	\mathbf{M}	\mathbf{R}	\mathbf{T}	\mathbf{C}	\mathbf{D}	Constant	Repeat
S1 (Source 1)	Data to display	-	-	-	-	X	X	X	-	
Q (Output)	First output number to display data	-	X	\mathbf{A}	-	-	-	-	-	

For the valid device address range, see pages 6-1 and 6-2 (Basic Vol.).
A Internal relays M0 through M2557 can be designated as Q . Special internal relays cannot be designated as Q .
When T (timer) or C (counter) is used as S1, the timer/counter current value (TC or CC) is read out.

Conversion

BCD: To connect BCD (decimal) display units
BIN: To connect BIN (hexadecimal) display units

Latch Phase and Data Phase

Select the latch and data phases to match the phases of the display units in consideration of sink or source output of the output module.

Output Points

The quantity of required output points is 4 plus the quantity of digits to display. When displaying 4 digits with output Q0 designated as the first output number, 8 consecutive output points must be reserved starting with Q0 through Q7.

Display Processing Time

Displaying one digit of data requires 3 scan times after the input to the DISP instruction is turned on. Keep the input to the DISP instruction for the period of time shown below to process all digits of the display data.

```
    Display Processing Time
3 scan times }\times\mathrm{ Quantity of digits
```

When the scan time is less than 2 ms , the data cannot be displayed correctly. When the scan time is too short to ensure normal display, set a value of 3 or more (in ms) to data register D8022 (constant scan time preset value). See page 5-50 (Basic Vol.).

Example: DISP

The following example demonstrates a program to display the 4-digit current value of counter CNT10 on 7-segment display units (IDEC's DD3S-F31N) connected to the transistor sink output module.

10	S1	Q	LAT	DAT
DISP	C10	Q30	L	H
BCD4	C			

When input 10 is on, the 4-digit current value of counter C10 is displayed on 7 -segment digital display units.

Output Wiring Diagram

8-Transistor Sink Output Module FC4A-T08K1

DGRD (Digital Read)

Quantity of digits:
1 to 5 (decimal)
1 to 4 (hex)

When input is on, data designated by devices I and Q is set to a data register designated by destination device D1.

This instruction can be used to change preset values for timer and counter instructions using digital switches. The data that can be read using this instruction is 0 through 65535 (5 digits), or FFFFh.

Applicable CPU Modules

FC5A-C10R2/C/D	FC5A-C16R2/C/D	FC5A-C24R2/C/D	FC5A-D16RK1/RS1	FC5A-D32K3/S3	FC5A-D12K1E/S1E
-	-	X	X	X	X

Note: The DGRD instruction requires transistor output terminals. When using all-in-one 24-I/O type CPU module FC5A-C24R2, connect a transistor output module.

Valid Devices

Device	Function	\mathbf{I}	\mathbf{Q}	\mathbf{M}	\mathbf{R}	\mathbf{T}	\mathbf{C}	\mathbf{D}	Constant	Repeat
\mathbf{I}	First input number to read	X	-	-	-	-	-	-	-	
Q	First output number for digit selection	-	X	-	-	-	-	-	-	
D1 (Destination 1)	Destination to store results	-	-	-	-	-	-	X		-

For the valid device address range, see pages 6-1 and 6-2 (Basic Vol.).
The DGRD instruction can read 65535 (5 digits) at the maximum. When the read value exceeds 65535 with the quantity of digits set to 5 , a user program execution error will result, turning on special internal relay M8004 and the ERR LED on the CPU module.

Note: The DGRD instruction can be used up to 16 times in a user program. When transferring a user program containing more than 16 DGRD instructions to the CPU, a user program syntax error occurs, turning on the ERR LED. The user program cannot be executed.

Conversion

BCD: To connect BCD (decimal) digital switches
BIN: To connect BIN (hexadecimal) digital switches

Input Points

Inputs are used to read the data from digital switches. The quantity of required input points is always 4 . Four input points must be reserved starting with the input number designated by device I. For example, when input IO is designated as device I, inputs IO through I3 are used.
When using input terminals on the CPU module, the filter value has an effect (default value is 3 ms). Input terminals on expansion input modules have a fixed filter value of 4 ms . For Input Filter, see page 5-42 (Basic Vol.).

Output Points

Outputs are used to select the digits to read. The quantity of required output points is equal to the quantity of digits to read. When connecting the maximum of 5 digital switches, 5 output points must be reserved starting with the output number designated by device Q. For example, when output $Q 0$ is designated as device Q to read 3 digits, outputs Q0 through Q2 are used.

Digital Switch Data Reading Time

Reading digital switch data requires the following time after the input to the DGRD instruction is turned on. Keep the input to the DGRD instruction for the period of time shown below to read the digital switch data. For example, when reading data from 5 digital switches to the destination device, 14 scans are required.

Digital Switch Data Reading Time
2 scan times \times (Quantity of digits +2)

Adjusting Scan Time

The DGRD instruction requires a scan time longer than the filter time plus 6 ms .
Minimum Required Scan Time
(Scan time) \geq (Filter time) +6 ms
The filter time depends on the input terminal used as shown below.

Input Terminals	Filter Time
I0 through I7 on CPU Modules	Filter value selected in the Function Area Settings (default 3 ms) See Input Filter on page 5-42 (Basic Vol.).
I10 through I17 on CPU Modules	3 ms (fixed)
Inputs on Expansion Input Modules	4 ms (fixed)

When the actual scan time is too short to execute the DGRD instruction, use the constant scan function. When the input filter time is set to 3 ms , set a value of 9 or more (in ms) to special data register D8022 (constant scan time preset value). See page 5-50 (Basic Vol.). When the input filter time is changed, set a proper value to D8022 to make sure of the minimum required scan time shown above.

Example: DGRD

The following example demonstrates a program to read data from four digital switches (IDEC's DFBN-031D-B) to a data register in the CPU module, using a 8-point DC input module and a 16-point transistor sink output module.

When input 15 is on, the 4 -digit value from $B C D$ digital switches is read to data register D10.

I/O Wiring Diagram

11: Program Branching Instructions

Introduction

The program branching instructions reduce execution time by making it possible to bypass portions of the program whenever certain conditions are not satisfied.

The basic program branching instructions are LABEL and LJMP, which are used to tag an address and jump to the address which has been tagged. Programming tools include "either/or" options between numerous portions of a program and the ability to call one of several subroutines which return execution to where the normal program left off.

The DI or El instruction disables or enables interrupt inputs and timer interrupt individually.

LABEL (Label)

This is the label number, from 0 to 127 (all-in-one type CPU) or 0 to 255 (slim type CPU), used at the program address where the execution of program instructions begins for a program branch.
An END instruction may be used to separate a tagged portion of the program from the main program. In this way, scan time is minimized by not executing the program branch unless input conditions are satisfied.
Note: The same label number cannot be used more than once.

Applicable CPU Modules

FC5A-C10R2/C/D	FC5A-C16R2/C/D	FC5A-C24R2/C/D	FC5A-D16RK1/RS1	FC5A-D32K3/S3	FC5A-D12K1E/S1E
X	X	X	X	X	X

Valid Devices

Device	Function	\mathbf{I}	\mathbf{Q}	\mathbf{M}	\mathbf{R}	\mathbf{T}	\mathbf{C}	\mathbf{D}	Constant	Repeat
Label number	Tag for LJMP and LCAL	-	-	-	-	-	-	-	$0-127,0-255$	-

LJMP (Label Jump)

When input is on, jump to the address with label 0 through 127 (all-in-one type CPU) or 0 to 255 (slim type CPU) designated by S1.

When input is off, no jump takes place, and program execution proceeds with the next instruction.

The LJMP instruction is used as an "either/or" choice between two portions of a program. Program execution does not return to the instruction following the LJMP instruction, after the program branch.

Applicable CPU Modules

FC5A-C10R2/C/D	FC5A-C16R2/C/D	FC5A-C24R2/C/D	FC5A-D16RK1/RS1	FC5A-D32K3/S3	FC5A-D12K1E/S1E
X	X	X	X	X	X

Valid Devices

Device	Function	I	\mathbf{Q}	\mathbf{M}	\mathbf{R}	\mathbf{T}	\mathbf{C}	\mathbf{D}	Constant	Repeat
S1 (Source 1)	Label number to jump to	-	-	-	-	-	-	X	$0-127,0-255$	-

For the valid device address range, see pages 6-1 and 6-2 (Basic Vol.).
Since the LJMP instruction is executed in each scan while input is on, a pulse input from a SOTU or SOTD instruction should be used as required.
Note: Make sure that a LABEL instruction of the label number used for a LJMP instruction is programmed. When designating S1 using other than a constant, the value for the label is a variable. When using a variable for a label, make sure that all probable LABEL numbers are included in the user program. If a matching label does not exist, a user program execution error will result, turning on special internal relay M8004 and the ERR LED on the CPU module.

Example: LJMP and LABEL

The following example demonstrates a program to jump to three different portions of program depending on the input.

When input 10 is on, program execution jumps to label 0 .

When input 11 is on, program execution jumps to label 1 .

When input 12 is on, program execution jumps to label 2.

M8121 is the 1-sec clock special internal relay.
When jump occurs to label 0 , output Q0 oscillates in 1 -sec increments.

M8122 is the 100 -ms clock special internal relay.
When jump occurs to label 1, output Q1 oscillates in 100-ms increments.

M8123 is the 10 -ms clock special internal relay.
When jump occurs to label 2, output Q2 oscillates in 10-ms increments.

Using the Timer Instruction with Program Branching

When the timer start input of the TML, TIM, TMH or TMS instruction is already on, timedown begins immediately at the location jumped to, starting with the timer current value. When using a program branch, it is important to make sure that timers are initialized when desired, after the jump. If it is necessary to initialize the timer instruction (set to the preset value) after the jump, the timer's start input should be kept off for one or more scan cycles before initialization. Otherwise, the timer input on will not be recognized.

Using the SOTU/SOTD Instructions with Program Branching

Check that pulse inputs of counters and shift registers, and input of single outputs (SOTU and SOTD) are maintained during the jump, if required. Hold the input off for one or more scan cycles after the jump for the rising or falling edge transition to be recognized.

Although normally, the SOTU instruction produces a pulse for one scan, when used in a program branch the SOTU pulse will last only until the next time the same SOTU instruction is executed.

In the example on the left, the program branch will loop as long as internal relay MO remains on. However, the SOTU produces a pulse output only during the first loop.

Since the END instruction is not executed as long as M0 remains on, output Q1 is not turned on even if input I1 is on.

LCAL (Label Call)

When input is on, the address with label 0 through 127 (all-in-one type CPU) or 0 to 255 (slim type CPU) designated by S 1 is called. When input is off, no call takes place, and program execution proceeds with the next instruction.
The LCAL instruction calls a subroutine, and returns to the main program after the branch is executed. A LRET instruction (see below) must be placed at the end of a program branch which is called, so that normal program execution resumes by returning to the instruction following the LCAL instruction.

Note: The END instruction must be used to separate the main program from any subroutines called by the LCAL instruction.
A maximum of four LCAL instructions can be nested. When more than four LCAL instructions are nested, a user program execution error will result, turning on special internal relay M8004 and the ERR LED on the CPU module.

Applicable CPU Modules

FC5A-C10R2/C/D	FC5A-C16R2/C/D	FC5A-C24R2/C/D	FC5A-D16RK1/RS1	FC5A-D32K3/S3	FC5A-D12K1E/S1E
X	X	X	X	X	X

Valid Devices

Device	Function	I	\mathbf{Q}	\mathbf{M}	\mathbf{R}	\mathbf{T}	\mathbf{C}	\mathbf{D}	Constant	Repeat
S1 (Source 1)	Label number to call	-	-	-	-	-	-	X	$0-127,0-255$	-

For the valid device address range, see pages 6-1 and 6-2 (Basic Vol.).
Since the LCAL instruction is executed in each scan while input is on, a pulse input from a SOTU or SOTD instruction should be used as required.

Note: Make sure that a LABEL instruction of the label number used for a LCAL instruction is programmed. When designating S1 using other than a constant, the value for the label is a variable. When using a variable for a label, make sure that all probable LABEL numbers are included in the user program. If a matching label does not exist, a user program execution error will result, turning on special internal relay M8004 and the ERR LED on the CPU module.

LRET (Label Return)

This instruction is placed at the end of a subroutine called by the LCAL instruction. When the subroutine is completed, normal program execution resumes by returning to the instruction following the LCAL instruction.
The LRET must be placed at the end of the subroutine starting with a LABEL instruction. When the LRET is programmed at other places, a user program execution error will result, turning on special internal relay M8004 and the ERR LED on the CPU module.

Applicable CPU Modules

FC5A-C10R2/C/D	FC5A-C16R2/C/D	FC5A-C24R2/C/D	FC5A-D16RK1/RS1			FC5A-D32K3/S3				FC5A-D12K1E/S1E	
X	X	X	X			X				X	
Valid Devices											
Device	Function		I	Q	M	R	T	C	D	Constant	Repeat
-		-	-	-	-	-	-	-	-	-	-

Correct Structure for Calling Subroutine

When a LCAL instruction is executed, the remaining program instructions on the same rung may not be executed upon return, if input conditions are changed by the subroutine. After the LRET instruction of a subroutine, program execution begins with the instruction following the LCAL instruction, depending on current input condition.

When instructions following a LCAL instruction must be executed after the subroutine is called, make sure the subroutine does not change input conditions unfavorably. In addition, include subsequent instructions in a new ladder line, separated from the LCAL instruction.

Separate the ladder line for each LCAL instruction.

10 status may be changed by the subroutine upon return.

Example: LCAL and LRET

The following example demonstrates a program to call three different portions of program depending on the input. When the subroutine is complete, program execution returns to the instruction following the LCAL instruction.

When input 10 is on, program execution jumps to label 0 .

When input 11 is on, program execution jumps to label 1.

When input 12 is on, program execution jumps to label 2.

M8121 is the 1-sec clock special internal relay.
When jump occurs to label 0 , output Q0 oscillates in 1-sec increments.
Program execution returns to the address of input 11.

M8122 is the 100 -ms clock special internal relay.
When jump occurs to label 1, output Q1 oscillates in 100-ms increments.
Program execution returns to the address of input 12 .

M8123 is the 10 -ms clock special internal relay.
When jump occurs to label 2, output Q2 oscillates in 10-ms increments.
Program execution returns to the address of END.

DJNZ (Decrement Jump Non-zero)

When input is on, the value stored in the data register designated by S 1 is decremented by one and is checked. If the resultant value is not 0 , program execution jumps to address with label 0 through 127 (all-in-one CPU) or 255 (slim CPU) designated by S2. If the decrement results in 0 , no jump takes place, and program execution proceeds with the next instruction.

This instruction is available on upgraded CPU modules with system program version 210 or higher.

Applicable CPU Modules

FC5A-C10R2/C/D	FC5A-C16R2/C/D	FC5A-C24R2/C/D	FC5A-D16RK1/RS1			FC5A-D32K3/S3				FC5A-D12K1E/S1E	
X	X	X	X			X				X	
Valid Devices											
Device	Function		I	Q	M	R	T	C	D	Constant	Repeat
S1 (Source 1)	Decrement value		-	-	-	-	-	-	X	-	-
S2 (Source 2)	Label number to jump to		-	-	-	-	-	-	X	$\begin{aligned} & 0-127 \\ & 0-255 \end{aligned}$	-

For the valid device address range, see pages 6-1 and 6-2 (Basic Vol.).
Since the DJNZ instruction is executed in each scan while input is on, a pulse input from a SOTU or SOTD instruction should be used as required.
The label number can be 0 through 127 (all-in-one CPU) or 0 through 255 (slim CPU). Make sure that a LABEL instruction of the label number used for a DJNZ instruction is programmed. When designating S2 using a data register, the value for the label is a variable. When using a variable for a label, make sure that all probable LABEL numbers are included in the user program. If a matching label does not exist, a user program execution error will result, turning on special internal relay M8004 and the ERR LED on the CPU module.

Example: DJNZ and LABEL

The following example demonstrates a program to store consecutive values 1000 through 1049 to data registers D100 through D149, respectively.

M8120 is the initialize pulse special internal relay. At start-up, MOV instructions store initial data.
$1049 \rightarrow$ D0 to store the value for the first cycle. $50 \rightarrow$ D1 to determine the jump cycles.

IMOV moves D0 data 1049 to D1049 in the first cycle. DEC decrements DO data to 1048.

DJNZ jumps to label 255 until D1 value reduces to 0 .

1st cycle:	D1	50	Destination: D99 + 50 = D149
2nd cycle:	D1	49	Destination: D99 + 49 = D148
3rd cycle:	D1	48	Destination: D99 + $48=$ D147
4th cycle:	D1	47	Destination: D99 + 47 = D146
49th cycle:	D1	2	Destination: D99 + 2 = D101
50th cycle:	D1	1	Destination: D99 + 1 = D100

D0 \qquad 1001
DO $1000 \longrightarrow$ D100 1000

DI (Disable Interrupt)

When input is on, interrupt inputs and timer interrupt designated by source device S1 are disabled.

El (Enable Interrupt)

When input is on, interrupt inputs and timer interrupt designated by source device S1 are enabled.

Applicable CPU Modules

FC5A-C10R2/C/D	FC5A-C16R2/C/D	FC5A-C24R2/C/D	FC5A-D16RK1/RS1			FC5A-D32K3/S3				FC5A-D12K1E/S1E	
X	X	X	X			X				X	
Valid Devices											
Device	Function		I	Q	M	R	T	C	D	Constant	Repeat
S1 (Source 1)	Interrupt inputs and timer interrupt		-	-	-	-	-	-	-	1-31	-

Interrupt inputs 12 through 15 and timer interrupt selected in the Function Area Settings are normally enabled when the CPU starts. When the DI instruction is executed, interrupt inputs and timer interrupt designated as source device S1 are disabled even if the interrupt condition is met in the user program area subsequent to the DI instruction. When the El instruction is executed, disabled interrupt inputs and timer interrupt designated as source device S1 are enabled again in the user program area subsequent to the El instruction. Different devices can be selected for the DI and El instructions to disable and enable interrupt inputs selectively. For Interrupt Input and Timer Interrupt, see pages 5-34 and 5-36 (Basic Vol.).
Make sure that interrupt inputs and timer interrupt designated as source device S1 are selected in the Function Area Settings. Otherwise, when the DI or El instruction is executed, a user program execution error will result, turning on special internal relay M8004 and the ERR LED on the CPU module.

The DI and El instructions cannot be used in an interrupt program. If used, a user program execution error will result, turning on special internal relay M8004 and the ERR LED on the CPU module.

Special Internal Relays M8140-M8144: Interrupt Status

Special internal relays M8140 through M8144 are provided to indicate whether interrupt inputs and timer interrupt are enabled or disabled.

Interrupt	Interrupt Enabled	Interrupt Disabled
Interrupt Input I2	M8140 ON	M8140 OFF
Interrupt Input I3	M8141 ON	M8141 OFF
Interrupt Input I4	M8142 ON	M8142 OFF
Interrupt Input I5	M8143 ON	M8143 OFF
Timer Interrupt	M8144 ON	M8144 OFF

Programming WindLDR

In the Disable Interrupt (DI) or Enable Interrupt (EI) dialog box, click the check box on the left of Interrupt Inputs I2 through I5 or Timer Interrupt to select source device S1. The example below selects interrupt inputs I2, I3, and timer interrupt for the DI instruction, and a 19 will be shown as source device S1.

The total of selected interrupt inputs and timer interrupt is shown as source device S 1 .

Interrupt	S1 Value
Interrupt Input I2	1
Interrupt Input I3	2
Interrupt Input I4	4
Interrupt Input I5	8
Timer Interrupt	16

Example: DI and EI

The following example demonstrates a program to disable and enable interrupt inputs and timer interrupt selectively. For the interrupt input and timer interrupt functions, see pages 5-34 and 5-36 (Basic Vol.). In this example, inputs I2 and I3 are designated as interrupt inputs and timer interrupt is used with interrupt intervals of 100 ms .

M8120 is the initialize pulse special internal relay.

D8032 stores jump destination label number 0 for interrupt input 12.
D8033 stores jump destination label number 1 for interrupt input 13.
D8036 stores jump destination label number 2 for timer interrupt.

When input I10 is on, DI disables interrupt inputs I2, I3, and timer interrupt, then M8140, M8141, and M8144 turn off.

When input I 11 is on and $I 10$ is off, El enables interrupt inputs $I 2$ and $I 3$, then M8140 and M8141 turn on.

When input I12 is on and I10 is off, El enables timer interrupt, then M8144 turns on.

End of the main program.

When input 12 is on, program execution jumps to label 0 .
M8125 is the in-operation output special internal relay.
ALT turns on or off the output Q2 internal memory.
IOREF immediately writes the output Q2 internal memory status to actual output Q2.

Program execution returns to the main program.

When input 13 is on, program execution jumps to label 1.

M8125 is the in-operation output special internal relay.
ALT turns on or off the output Q3 internal memory.
IOREF immediately writes the output Q3 internal memory status to actual output Q3.

Program execution returns to the main program.

Timer interrupt occurs every 100 ms , then program execution jumps to label 2.

M8125 is the in-operation output special internal relay.
ALT turns on or off the output Q4 internal memory.
IOREF immediately writes the output Q4 internal memory status to actual output Q4.
Program execution returns to the main program.

IOREF (I/O Refresh)

When input is on, 1-bit I/O data designated by source device S1 is refreshed immediately regardless of the scan time.
When I (input) is used as S1, the actual input status is immediately read into an internal relay starting with M300 allocated to each input available on the CPU module.
When Q (output) is used as $S 1$, the output data in the RAM is immediately written to the actual output available on the CPU module.
Refresh instructions are useful when a real-time response is required in a user program which has a long scan time. The refresh instruction is most effective when using the refresh instruction at a ladder step immediately before using the data.

The IOREF instruction can be used with an interrupt input or timer interrupt to refresh data.

Applicable CPU Modules

FC5A-C10R2/C/D	FC5A-C16R2/C/D	FC5A-C24R2/C/D	FC5A-D16RK1/RS1	FC5A-D32K3/S3	FC5A-D12K1E/S1E
X	X	X	X	X	X

Valid Devices

Device	Function	\mathbf{I}	\mathbf{Q}	\mathbf{M}	\mathbf{R}	\mathbf{T}	\mathbf{C}	\mathbf{D}	Constant	Repeat
S1 (Source 1)	I/O for refresh	X	X	-	-	-	-	-	-	-

Only input or output numbers available on the CPU module can be designated as S1. Input and output numbers for expansion I/O modules cannot be designated as S1. For the valid device address range, see pages 6-1 and 6-2 (Basic Vol.).

Input Device Addresses and Allocated Internal Relays

Input Device	Internal Relay	Input Device	Internal Relay
10	M300	110	M310
11	M301	111	M311
12	M302	112	M312
13	M303	113	M313
14	M304	114	M314
15	M305	115	M315
16	M306	116	M316
17	M307	117	M317

During normal execution of a user program, I/O statuses are refreshed simultaneously when the END instruction is executed at the end of a scan. When a real-time response is needed to execute an interrupt, the IOREF instruction can be used. When the input to the IOREF instruction is turned on, the status of the designated input or output is read or written immediately.
When the IOREF instruction is executed for an input, the filter does not take effect and the input status at the moment is read to a corresponding internal relay.

The actual input status of the same input number is read to the internal input memory when the END instruction is executed as in the normal scanning, then the filter value has effect as designated in the Function Area Settings. See page 542 (Basic Vol.).

Example: IOREF

The following example demonstrates a program to transfer the input IO status to output QO using the IOREF instruction. Input IL is designated as an interrupt input. For the interrupt input function, see page 5-34 (Basic Vol.).

M8120 is the initialize pulse special internal relay.
D8032 stores 0 to designate jump destination label 0 for interrupt input I .

When input 12 is on, program execution jumps to label 0 .

M8125 is the in-operation output special internal relay. IOREF immediately reads input IO status to internal relay M300.

M300 turns on or off the output Q0 internal memory.
Another IOREF immediately writes the output Q0 internal memory status to actual output Q0.

Program execution returns to the main program.

HSCRF (High-speed Counter Refresh)

When input is on, the HSCRF instruction refreshes the high-speed counter current values in special data registers in real time.

The current values of four high-speed counters HSC1 through HSC4 are usually updated in every scan. The HSCRF can be used in any place in the ladder diagram where you want to read the updated high-speed counter current value.

For the high-speed counter function, see page 5-7(Basic Vol.).

Applicable CPU Modules

FC5A-C10R2/C/D	FC5A-C16R2/C/D	FC5A-C24R2/C/D	FC5A-D16RK1/RS1	FC5A-D32K3/S3	FC5A-D12K1E/S1E
X	X	X	X	X	X

Example: HSCRF

The following example demonstrates a program to update the current value of high-speed counter HSC1 using the HSCRF instruction. For the timer interrupt, see page 5-36 (Basic Vol.).

M8120 is the initialize pulse special internal relay.
D8036 stores 0 to designate jump destination label 0 for timer interrupt.

The interrupt program is separated from the main program by the END instruction.

While the CPU is running, program execution jumps to label 0 repeatedly at intervals selected in the Function Area Settings.

M8125 is the in-operation output special internal relay.
HSCRF updates the HSC1 current value in data registers D8210 and D8211.

When D8210/D8211 exceeds 150000, Q1 is turned on.
IOREF immediately writes the output Q0 internal memory status to actual output Q0.

Each time the interrupt program is completed, program execution returns to the main program at the address where timer interrupt occurred.

FRQRF (Frequency Measurement Refresh)

When input is on, the FRQRF instruction refreshes the frequency measurement values in special data registers in real time.

The FRQRF can be used in any place in the ladder diagram where you want to read the updated frequency measurement value.

Before the measured results are stored in the special data registers, it takes a maximum of calculation period plus one scan time. Using the FRQRF instruction in the ladder diagram, the latest value of the frequency measurement can be read out within 250 ms regardless of the input frequency.

For the frequency measurement function, see page 5-30 (Basic Vol.).

Applicable CPU Modules

FC5A-C10R2/C/D	FC5A-C16R2/C/D	FC5A-C24R2/C/D	FC5A-D16RK1/RS1	FC5A-D32K3/S3	FC5A-D12K1E/S1E
X	X	X	X	X	X

Example: FRQRF

The following example demonstrates a program to update the current value of frequency measurement value using the FRQRF instruction. For the timer interrupt, see page 5-36 (Basic Vol.).

M8120 is the initialize pulse special internal relay.
D8036 stores 0 to designate jump destination label 0 for timer interrupt.

The interrupt program is separated from the main program by the END instruction.

While the CPU is running, program execution jumps to label 0 repeatedly at intervals selected in the Function Area Settings.

M8125 is the in-operation output special internal relay.
FRQRF updates the HSC1 frequency measurement value in data registers D8060 and D8061.

When D8060/D8061 exceeds 5000, Q1 is turned on.
IOREF immediately writes the output QO internal memory status to actual output QO.
Each time the interrupt program is completed, program execution returns to the main program at the address where timer interrupt occurred.

COMRF (Communication Refresh)

The COMRF instruction refreshes the send and receive data in the expansion communication buffers for port 3 through port 7 in real time.

The send data in the buffer are usually sent out in the END processing. The receive data in the buffer are usually sent to MicroSmart devices in the END processing. The COMRF can be used in any place in the ladder diagram where you want to execute the TXD instruction immediately or to update the received data in a period shorter than the scan time.

Note: The COMRF instruction cannot be used in interrupt programs. If used, a user program execution error will result, turning on special internal relay M8004 and the ERR LED on the CPU module.

This instruction is available on upgraded CPU modules with system program version 110 or higher.
Applicable CPU Modules

| FC5A-C10R2/C/D | FC5A-C16R2/C/D
 FC5A-C24R2D | FC5A-C24R2/C | FC5A-D16RK1/RS1 | FC5A-D32K3/S3 | FC5A-D12K1E/S1E |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - | - | X | X | X | X |

Example: COMRF

The following example demonstrates a program to execute COMRF instructions among other instructions.

Before executing the RXD instruction, COMRF refreshes send and receive data of the expansion communication ports.

After executing the TXD instruction, COMRF refreshes send and receive data of the expansion communication ports.

COMRF Execution Time

While the expansion RS232C/RS485 communication module sends or receives communication, the CPU module requires the execution time to execute the COMRF instruction as shown in the table below.

Expansion RS232C/RS485 Communication Module	COMRF Maximum Execution Time (Note 1)
FC5A-SIF2	Approx. 4 ms
FC5A-SIF4 (Note 2)	Approx. 10 ms

Note 1: The values are the maximum execution time when one expansion RS232C/RS485 communication module performs communication. When multiple expansion RS232C/RS485 communication modules perform communication at the same time, the execution time is multiplied by the quantity of the expansion RS232C/RS485 communication modules.

Note 2: To use FC5A-SIF4 expansion RS485 communication module, CPU modules with system program version 220 or higher is required.

Communication Refresh for Port 3 through port 7

The expansion communication buffers can also be refreshed automatically every 10 ms without using the COMRF instruction. Select Every 10 ms under Communication Refresh for Port 3 through Port 7 in the Function Area Settings. For details, see page 5-43 (Basic Vol.).

12: Coordinate Conversion Instructions

Introduction

The coordinate conversion instructions convert one data point to another value, using a linear relationship between values of X and Y.

XYFS (XY Format Set)

When input is on, the format for $X Y$ conversion is set. The XY coordinates define the linear relationship between X and Y.

CPU Module	No. of XY Coordinates	\mathbf{n}
All-in-One	2 to 5	$0 \leq \mathrm{n} \leq 4$
Slim	2 to 32	$0 \leq \mathrm{n} \leq 31$

Applicable CPU Modules

FC5A-C10R2/C/D	FC5A-C16R2/C/D	FC5A-C24R2/C/D	FC5A-D16RK1/RS1	FC5A-D32K3/S3	FC5A-D12K1E/S1E
X	X	X	X	X	X

Valid Devices

Device	Function	I	\mathbf{Q}	\mathbf{M}	\mathbf{R}	\mathbf{T}	\mathbf{C}	\mathbf{D}	Constant	Repeat
S1 (Source 1)	Format number	-	-	-	-	-	-	-	0 to 5 (all-in-one CPU) 0 to 29 (slim CPU)	
X0 through Xn	X value	X	0 to 65535							
Y0 through Yn	Y value	X	0 to 65535 -32768 to 32767							

For the valid device address range, see pages 6-1 and 6-2 (Basic Vol.).
When T (timer) or C (counter) is used as XO through Xn or YO through Yn, the timer/counter current value (TC or CC) is read out.

S1 (Format number)

Select a format number 0 through 5 (all-in-one type CPU) or 0 through 29 (slim type CPU). A maximum of 6 or 30 formats for XY conversion can be set.

Xn (X value), Yn (Y value)
Enter values for the X and Y coordinates. Two different data ranges are available depending on the data type.

Data Type	Word	Integer
Xn (X value)	0 to 65535	0 to 65535
Yn (Y value)	0 to 65535	-32768 to 32767

Valid Coordinates

Valid Data Types

\mathbf{W} (word)	X
\mathbf{I} (integer)	X
\mathbf{D} (double word)	-
\mathbf{L} (long)	-
\mathbf{F} (float)	-

When a bit device such as I (input), Q (output), M (internal relay), or R (shift register) is designated as Xn or $\mathrm{Yn}, 16$ points are used.
When a word device such as T (timer), C (counter), or D (data register) is designated as Xn or $\mathrm{Yn}, 1$ point is used.

CVXTY (Convert X to Y)

When input is on, the X value designated by device $S 2$ is converted into corresponding Y value according to the linear relationship defined in the XYFS instruction. Device S1 selects a format from a maximum of 6 (all-in-one CPU) or 30 (slim CPU) XY conversion formats. The conversion result is set to the device designated by D1.

Applicable CPU Modules

FC5A-C10R2/C/D	FC5A-C16R2/C/D	FC5A-C24R2/C/D	FC5A-D16RK1/RS1	FC5A-D32K3/S3	FC5A-D12K1E/S1E
X	X	X	X	X	X

Valid Devices

Device	Function	I	Q	M	R	T	C	D	Constant	Repeat
S1 (Source 1)	Format number	-	-	-	-	-	-	-	$\begin{gathered} 0 \text { to } 5 \text { (all-in-one CPU) } \\ 0 \text { to } 29 \text { (slim CPU) } \end{gathered}$	-
S2 (Source 2)	X value	X	X	X	X	X	X	X	0 to 65535	-
D1 (Destination 1)	Destination to store results	-	X	(X	X	X	X	-	-

For the valid device address range, see pages 6-1 and 6-2 (Basic Vol.).
A Internal relays M0 through M2557 can be designated as D1. Special internal relays cannot be designated as D1.
When T (timer) or C (counter) is used as S2, the timer/counter current value (TC or CC) is read out. When T (timer) or C (counter) is used as D1, the data is written in as a preset value (TP or CP) which can be 0 through 65535.

S1 (Format number)

Select a format number 0 through 5 (all-in-one type CPU) or 0 through 29 (slim type CPU) which have been set using the XYFS instruction. When an XYFS instruction with the corresponding format number is not programmed, or when XYFS and CVXTY instructions of the same format number have different data type designations, a user program execution error will result, turning on special internal relay M8004 and the ERR LED on the CPU module.

S2 (X value)

Enter a value for the X coordinate to convert, within the range specified in the XYFS instruction.

D1 (Destination to store results)

The conversion result of the Y value is stored to the destination.

Data Type	Word		Integer	
S2 (X value)	0 to 65535		0 to 65535	
D1 (Y value)	0 to 65535		-32768 to 32767	
Valid Coordinates	$\begin{array}{r} Y \\ 65535 \end{array}$		32767 0 -32768	$\xrightarrow[65535]{ }$ X

Valid Data Types

W (word)	X
I (integer)	X
\mathbf{D} (double word)	-
L (long)	-
F (float)	-

When a bit device such as I (input), Q (output), M (internal relay), or R (shift register) is designated as S2 or D1, 16 points are used.
When a word device such as T (timer), C (counter), or D (data register) is designated as S2 or D1, 1 point is used.

Data Conversion Error

The data conversion error is ± 0.5.

CVYTX (Convert \mathbf{Y} to X)

When input is on, the Y value designated by device $S 2$ is converted into corresponding X value according to the linear relationship defined in the XYFS instruction. Device S 1 selects a format from a maximum of 6 (all-in-one CPU) or 30 (slim CPU) XY conversion formats. The conversion result is set to the device designated by D1.

Applicable CPU Modules

FC5A-C10R2/C/D	FC5A-C16R2/C/D	FC5A-C24R2/C/D	FC5A-D16RK1/RS1					FC5A-D32K3/S3		FC5A-D12K1E/S1E	
X	X	X			X				X		
Valid Devices											
Device	Function	I	Q	M	R	T	C	D	Const		Repeat
S1 (Source 1)	Format number	-	-	-	-	-	-	-	$\begin{aligned} & 0 \text { to } 5 \text { (all-in } \\ & 0 \text { to } 29 \text { (sli } \end{aligned}$	$\begin{aligned} & \hline \text { e CPU) } \\ & \text { CPU) } \end{aligned}$	-
S2 (Source 2)	Y value	X	X	X	X	X	X	X	$\begin{array}{r} 0 \text { to } 65 \\ -32768 \text { to } \end{array}$		-
D1 (Destination 1)	Destination to sto	results -	X	(X	X	X	X	-		-

For the valid device address range, see pages 6-1 and 6-2 (Basic Vol.).
A Internal relays M0 through M2557 can be designated as D1. Special internal relays cannot be designated as D1.
When T (timer) or C (counter) is used as $S 2$, the timer/counter current value (TC or CC) is read out. When T (timer) or C (counter) is used as D1, the data is written in as a preset value (TP or CP) which can be 0 through 65535.

S1 (Format number)

Select a format number 0 through 5 (all-in-one type CPU) or 0 through 29 (slim type CPU) which have been set using the XYFS instruction. When an XYFS instruction with the corresponding format number is not programmed, or when XYFS and CVYTX instructions of the same format number have different data type designations, a user program execution error will result, turning on special internal relay M8004 and the ERR LED on the CPU module.

S2 (Y value)

Enter a value for the Y coordinate to convert, within the range specified in the XYFS instruction. Two different data ranges are available depending on the data type.

D1 (Destination to store results)

The conversion result of the X value is stored to the destination.

Data Type	Word		Integer	
S2 (Y value)	0 to 65535		-32768 to 32767	
D1 (X value)	0 to 65535		0 to 65535	
Valid Coordinates				$\underset{65535}{\longrightarrow} x$

Valid Data Types

W (word)	X
I (integer)	X
D (double word)	-
L (long)	-
F (float)	-

Data Conversion Error

The data conversion error is ± 0.5.

Example: Linear Conversion

The following example demonstrates setting up two coordinate points to define the linear relationship between X and Y. The two points are $(X 0, Y 0)=(0,0)$ and $(X 1, Y 1)=(8000,4000)$. Once these are set, there is an X to Y conversion, as well as a Y to X conversion.

M8120 is the initialize pulse special internal relay.
At startup, XYFS specifies two points.
When input 10 is on, CVXTY converts the value in D10 and stores the result in D20.

When input I1 is on, CVYTX converts the value in D11 and stores the result in D21.

The graph shows the linear relationship that is defined by the two points:

$$
Y=\frac{1}{2} X
$$

If the value in data register D10 is 2000, the value assigned to D20 is 1000 .

For Y to X conversion, the following equation is used:

$$
\mathrm{X}=2 \mathrm{Y}
$$

If the value in data register D11 is 2500, the value assigned to D21 is 5000 .

Example: Overlapping Coordinates

In this example, the XYFS instruction sets up three coordinate points, which define two different linear relationships between X and Y. The three points are: $(X 0, Y 0)=(0,100),(X 1, Y 1)=(100,0)$, and $(X 2, Y 2)=(300,100)$. The two line segments define overlapping coordinates for X. That is, for each value of Y within the designated range, there would be two X values assigned.

M8120 is the initialize pulse special internal relay.
At startup, XYFS specifies three points.
CVXTY converts the value in C 10 and stores the result in D90.

CVYTX converts the value in D95 and stores the result in D30.

The first line segment defines the following relationship for X to Y conversion:

$$
Y=-X+100
$$

The second line segment defines another relationship for X to Y conversion:

$$
Y=\frac{1}{2} X-50
$$

For X to Y conversion, each value of X has only one corresponding value for Y. If the current value of counter C10 is 250 , the value assigned to D90 is 75 .

For Y to X conversion, the XYFS instruction assigns two possible values of X for each value of Y. The relationship defined by the first two points has priority in these cases. The line between points (X0, Y0) and (X1, Y1), that is, the line between (0,100) and (100, 0), has priority in defining the relationship for Y to X conversion ($X=-Y+100$).

Therefore, if the value in data register D95 is 40 , the value assigned to D30 is 60 , not 180 .
Exactly the same two line segments might also be defined by the XYFS instruction, except that the point $(300,100)$ could be assigned first, as $(X 0, Y 0)$, and the point $(100,0)$ could be defined next, as $(X 1, Y 1)$. In this case, this linear relationship would have priority.

In this case, if the value in data register D95 is 40, the value assigned to D30 is 180, not 60 .

AVRG (Average)

When input is on, sampling data designated by device S1 is processed according to sampling conditions designated by devices S2 and S3.

When sampling is complete, average, maximum, and minimum values are stored to 3 consecutive devices starting with device designated by D1, then sampling completion output designated by device D2 is turned on.

Data Type	\mathbf{W}, \mathbf{I}	D, L, F
Average	D1	D1•D1+1
Maximum value	$\mathrm{D} 1+1$	$\mathrm{D} 1+2 \cdot \mathrm{D} 1+3$
Minimum value	$\mathrm{D} 1+2$	$\mathrm{D} 1+4 \cdot \mathrm{D} 1+5$

The AVRG instruction is effective for data processing of analog input values. A maximum of 32 AVRG instructions can be programmed in a user program.

Applicable CPU Modules

FC5A-C10R2/C/D	FC5A-C16R2/C/D	FC5A-C24R2/C/D	FC5A-D16RK1/RS1	FC5A-D32K3/S3	FC5A-D12K1E/S1E
X	X	X	X	X	X

Valid Devices

Device	Function	I	Q	M	R	T	C	D	Constant	Repeat
S1 (Source 1)	Sampling data	X	X	X	X	X	X	X	-	-
S2 (Source 2)	Sampling end input	X	X	X	X	-	-	-	-	-
S3 (Source 3)	Sampling cycles (scan times)	X	X	X	X	X	X	X	0-65535	-
D1 (Destination 1)	First device address to store results	-	-	-	-	-	-	X	-	-
D2 (Destination 2)	Sampling completion output	-	X	(-	-	-	-	-	-

For the valid device address range, see pages 6-1 and 6-2 (Basic Vol.).
A Internal relays M0 through M2557 can be designated as D2. Special internal relays cannot be designated as D2.
When T (timer) or C (counter) is used as S1 or S3, the timer/counter current value (TC or CC) is read out.
When F (float) data type is selected, only data registers can be designated as S1 and D1.
While input is on, the AVRG instruction is executed in each scan. When the quantity of sampling cycles (scan times) designated by device S3 is 1 through 65535, sampling data designated by device S1 is processed in each scan. When the designated sampling cycles have been completed, the average value of the sampling data is set to device designated by D1 (data type W or I) or D1•D1+1 (data type D, L, or F). The maximum value of the sampling data is set to the next device, $\mathrm{D} 1+1$ (data type W or I) or $\mathrm{D} 1+2 \cdot \mathrm{D} 1+3$ (data type D , L, or F). The minimum value of the sampling data is set to the next device, $\mathrm{D} 1+2$ (data type W or I) or D1+4•D1+5 (data type D, L, or F). The sampling completion output designated by device D2 is turned on.
When the quantity of sampling cycles designated by device S3 is 0 , sampling is started when the input to the AVRG instruction is turned on, and stopped when the sampling end input designated by device $S 2$ is turned on. Then, the average, maximum, and minimum values are set to 3 devices starting with device designated by D1.
When the sampling exceeds 65535 cycles, the average, maximum, and minimum values at this point are set to 3 devices starting with device designated by D1, and sampling continues.

When the sampling end input is turned on before the sampling cycles designated by device S 3 have been completed, sampling is stopped and the results at this point are set to 3 devices starting with device designated by D1.

The average value is calculated to units, rounding the fractions of one decimal place.
When the sampling end input is not used, designate an internal relay or another valid device as a dummy for source device S2.
When F (float) data type is selected and S1 does not comply with the normal floating-point format, a user program execution error will result, turning on special internal relay M8004 and ERR LED on the CPU module. When an error occurs, incorrect S1 data are skipped. Average, maximum, and minimum values are calculated from correct S1 data, and set to 3 devices starting with device designated by D1.

Valid Data Types

W (word)	X
\mathbf{I} (integer)	X
D (double word)	X
L (long)	X
F (float)	X

When a bit device such as I (input), Q (output), M (internal relay), or R (shift register) is designated as the source, 16 points (word or integer data type) or 32 points (double-word or long data type) are used.
When a word device such as T (timer), C (counter), or D (data register) is designated as the source, 1 point (word or integer data type) or 2 points (double-word, long, or float data type) are used.

Example: AVRG

The following example demonstrates a program to calculate average values of the data register D100 and store the result to data register D200 in every 500 scans.

	AVRG(W)	S1	S2	S3	D1	D2	M8125 is the in-operation output special internal relay.
M8125		D100	110	500	D200	M100	

When the sampling end input does not turn on

While sampling end input $I 10$ is off, the average, maximum, and minimum values are calculated in every 500 scans and stored to data registers D200, D201, and D202, respectively. Sampling completion output M100 is set every 500 scans.

When the sampling end input turns on

When sampling end input 110 turns on, the average, maximum, and minimum values at this point are stored to data registers D200, D201, and D202, respectively. Sampling completion output M100 is also set. When sampling end input I10 turns off, sampling resumes starting at the first scan.

13: Pulse Instructions

Introduction

The PULS (pulse output) instruction is used to generate pulse outputs of 10 Hz through 100 kHz which can be used to control pulse motors for simple position control applications.

The PWM (pulse width modulation) instruction is used to generate pulse outputs of $14.49,45.96$, or 367.65 Hz with a variable pulse width ratio between 0% and 100%, which can be used for illumination control.

The RAMP instruction is used for trapezoidal control.
The ZRN instruction for zero-return control.
The PULS, PWM, RAMP, and ZRN instructions can be used on all slim type CPU modules, except that PULS3, PWM3, RAMP2, and ZRN3 instructions can not be used on the FC5A-D16RK1 and FC5A-D16RS1.

Instruction		PULS	PWM	RAMP	ZRN
Pulse Output Port	Q0	PULS1	PWM1	RAMP1	ZRN1
	Q1	PULS2	PWM2		ZRN2
	Q2	PULS3	PWM3	RAMP2	ZRN3
	Q3	-	-		-
Output Frequency		10 Hz to 100 kHz	$\begin{aligned} & 14.49 \mathrm{~Hz} \\ & 45.96 \mathrm{~Hz} \\ & 367.65 \mathrm{~Hz} \end{aligned}$	10 Hz to 100 kHz	10 Hz to 100 kHz
Pulse Width Ratio		50\%	0 to 100\%	50\%	50\%
Pulse Counting		PULS1 PULS3	PWM1 PWM3	RAMP1 RAMP2	-
Preset Value		1 to 100,000,000	1 to 100,000,000	1 to 100,000,000	-
Frequency Change Time		-	-	10 to 10,000 ms	-
Deceleration Input	High-speed	-	-	-	12, 13, 14, 15
	Normal	-	-	-	IO, I1, I6 to I627, M0 to M2557

PULS1 (Pulse Output 1)

When input is on, the PULS1 instruction sends out a pulse output from output Q0. The output pulse frequency is determined by source device S 1 . The output pulse width ratio is fixed at 50%.

PULS1 can be programmed to generate a predetermined number of output pulses. When pulse counting is disabled, PULS1 generates output pulses while the start input for the PULS1 instruction remains on.

PULS2 (Pulse Output 2)

When input is on, the PULS2 instruction sends out a pulse output from output Q1. The output pulse frequency is determined by source device S 1 . The output pulse width ratio is fixed at 50%.

PULS2 generates output pulses while the start input for the PULS2 instruction remains on. PULS2 cannot be programmed to generate a predetermined number of output pulses.

PULS3 (Pulse Output 3)

Not available on FC5A-16RK1/RS1

When input is on, the PULS3 instruction sends out a pulse output from output Q2. The output pulse frequency is determined by source device S1. The output pulse width ratio is fixed at 50%.

PULS3 can be programmed to generate a predetermined number of output pulses. When pulse counting is disabled, PULS3 generates output pulses while the start input for the PULS3 instruction remains on.

Note: The PULS1, PULS2, and PULS3 instructions can be used only once in a user program. When PULS1, PULS2, or PULS3 is not used, unused output Q0, Q1, or Q2 can be used for another pulse instruction or ordinary output.

Applicable CPU Modules

FC5A-C10R2/C/D	FC5A-C16R2/C/D	FC5A-C24R2/C/D	FC5A-D16RK1/RS1	FC5A-D32K3/S3	FC5A-D12K1E/S1E
-	-	-	$X(P U L S 1$ and	X	X

Valid Devices

Device	Function	\mathbf{I}	\mathbf{Q}	\mathbf{M}	\mathbf{R}	\mathbf{T}	\mathbf{C}	\mathbf{D}	Constant	Repeat
S1 (Source 1)	Control register	-	-	-	-	-	-	X	-	-
D1 (Destination 1)	Status relay	-	-	\mathbf{X}	-	-	-	-	-	

Source device S1 (control register) uses 8 data registers starting with the device designated as S1. Data registers D0-D1992, D2000D7992, and D10000-D49992 can be designated as S1. For details, see the following pages.
Destination device D1 (status relay) uses 3 internal relays starting with the device designated as D1. Internal relays M0 to M2550 can be designated as D1. The least significant digit of the internal relay number designated as D1 must be 0, otherwise the PULS instruction does not operate correctly. Special internal relays cannot be designated as D1. For details, see page 6-2 (Basic Vol.).

Source Device S1 (Control Register)

Store appropriate values to data registers starting with the device designated by S1 before executing the PULS instruction as required, and make sure that the values are within the valid range. Devices S1+5 through S1+7 are for read only.

Device	Function	Description	R/W
S1+0	Operation mode	$\begin{aligned} & \text { 0: } 10 \mathrm{~Hz} \text { to } 1 \mathrm{kHz} \\ & \text { 1: } 100 \mathrm{~Hz} \text { to } 10 \mathrm{kHz} \\ & \text { 2: } 1 \mathrm{kHz} \text { to } 100 \mathrm{kHz} \\ & \text { 3: } 200 \mathrm{~Hz} \text { to } 100 \mathrm{kHz} \text { (Note 2) } \end{aligned}$	R/W
S1+1	Output pulse frequency	When S1+0 (operation mode) = 0 to 2 : 1 to 100 (\%) (1% to 100% of the maximum frequency of selected mode $\mathrm{S} 1+0$) When S1+0 (operation mode) =3: 20 to $10,000(\times 10 \mathrm{~Hz})($ Note 3$)$	R/W

Device	Function	Description	R/W
S1+2	Pulse counting	0: Disable pulse counting 1: Enable pulse counting (PULS1/PULS3 only)	R/W
S1+3	Preset value (high word)	1 to 100,000,000 (05F5 E100h) (PULS1/PULS3 only)	R/W
S1+4	Preset value (low word)	(high word)	1 to 100,000,000 (05F5 E100h) (PULS1/PULS3 only)
S1+5	Current value (low word)		R
S1+6	Current value (low 5	R	
S1+7	Error status	0 to 5	

Note 1: Devices for high and low words can be swapped on upgraded CPU modules with system program version 110 or higher. See page 5-46 (Basic Vol.).

Note 2: The frequency range of mode 3 is from 250 Hz to 100 kHz for FC5A-D12K1E and FC5A-D12S1E.
Note 3: The frequency range of mode 3 is from 25 to $10,000(x 10 \mathrm{~Hz})$ for FC5A-D12K1E and FC5A-D12S1E.

S1+0 Operation Mode

The value stored in the data register designated by device S1+0 determines the frequency range of the pulse output.
0: 10 Hz to 1 kHz
: 100 Hz to 10 kHz
: 1 kHz to 100 kHz
: 200 Hz to 100 kHz

S1+1 Output Pulse Frequency

When $S 1+0$ is set to 0 through 2 , the value stored in the data register designated by device $S 1+1$ specifies the frequency of the pulse output in percent of the maximum of the frequency range selected by S1+0. Valid values for device S1+1 are 1 through 100, thus the output pulse frequency can be 10 Hz to 1 kHz (operation mode 0), 100 Hz to 10 kHz (operation mode 1), or 1 kHz to 100 kHz (operation mode 2).

When S1+0 is set to 3 (200 Hz to 100 kHz), valid values for device $\mathrm{S} 1+1$ are 20 through 10,000 and the $\mathrm{S} 1+1$ value multiplied by 10 determines the output pulse frequency, thus the output pulse frequency can be set in increments of 10 Hz . The output frequency error is $\pm 5 \%$ maximum.

Operation Mode (S1+0)	S1+1	Output Pulse Frequency (Hz)
0 to 2	1 to 100	Maximum frequency selected by S1+0 \times S1+1 value (\%)
3	20 to 10,000	$\mathrm{~S} 1+1$ value $\times 10$

S1+2 Pulse Counting

Pulse counting can be enabled for the PULS1 and PULS3 instruction only. With pulse counting enabled, PULS1 or PULS3 generates a predetermined number of output pulses as designated by devices $\mathrm{S} 1+3$ and $\mathrm{S} 1+4$. With pulse counting disabled, PULS1, PULS2, or PULS3 generates output pulses while the start input for the PULS instruction remains on.

0 : Disable pulse counting
1: Enable pulse counting (PULS1/PULS3 only)
When programming PULS2, store 0 to the data register designated by S1+2.

S1+3 Preset Value (High Word)

S1+4 Preset Value (Low Word)

With pulse counting enabled as described above, PULS1 or PULS3 generates a predetermined number of output pulses as designated by devices S1+3 and S1+4. The preset value can be 1 through 100,000,000 ($05 \mathrm{F5}$ E100h) stored in two consecutive data registers designated by S1+3 (high word) and S1+4 (low word).
When pulse counting is disabled for PULS1 or PULS3 or when programming PULS2, store 0 to data registers designated by S1+3 and S1+4.

S1+5 Current Value (High Word)

S1+6 Current Value (Low Word)

While the PULS1 or PULS3 instruction is executed with pulse counting enabled, the output pulse count is stored in two consecutive data registers designated by devices S1+5 (high word) and S1+6 (low word). The current value can be 1 through 100,000,000 (05F5 E100h) and is updated in every scan.

S1+7 Error Status

When the start input for the PULS instruction is turned on, device values are checked. When any error is found in the device values, the data register designated by device S1+7 stores an error code.

Error Code	Description
0	Normal
1	Operation mode designation error (S1+0 stores other than 0 through 3)
2	Output pulse frequency designation error (S1+1 stores a value that is not within the frequency range of the output pulse.)
3	Pulse counting designation error (S1+2 stores other than 0 and 1)
4	Preset value designation error (S1+3 and S1+4 store other than 1 through 100,000,000)
5	Invalid pulse counting designation for PULS2 (S1+2 stores 1)

Destination Device D1 (Status Relay)

Three internal relays starting with the device designated by D1 indicate the status of the PULS instruction. These devices are for read only.

Device	Function	Description	R/W
D1+0	Pulse output ON	0: Pulse output OFF $1:$ Pulse output ON	R
D1+1	Pulse output complete	0: Pulse output not complete $1:$ Pulse output complete	R
D1+2	Pulse output overflow	$0:$ Overflow not occurred $1:$ Overflow occurred (PULS1/PULS3 only)	R

D1+0 Pulse Output ON

The internal relay designated by device D1+0 remains on while the PULS instruction generates output pulses. When the start input for the PULS instruction is turned off or when the PULS1 or PULS3 instruction has completed generating a predetermined number of output pulses, the internal relay designated by device D1+0 turns off.

D1+1 Pulse Output Complete

The internal relay designated by device D1+1 turns on when the PULS1 or PULS3 instruction has completed generating a predetermined number of output pulses or when either PULS instruction is stopped to generate output pulses. When the start input for the PULS instruction is turned on, the internal relay designated by device D1+1 turns off.

D1+2 Pulse Output Overflow

The internal relay designated by device D1+2 turns on when the PULS1 or PULS3 instruction has generated more than the predetermined number of output pulses. When the start input for the PULS instruction is turned on, the internal relay designated by device D1+2 turns off.

Special Data Registers for Pulse Outputs

Three additional special data registers store the current frequency of pulse outputs.

Device Address	Function	Description
D8055	Current Pulse Frequency of PULS1 or RAMP1 (Q0)	While the PULS1 or RAMP1 instruction is executed, D8055 stores the current pulse frequency of output Q0. The value is updated every scan.
D8056	Current Pulse Frequency of PULS2 or RAMP1 (Q1)	While the PULS2 or RAMP1 (reversible control dual-pulse output) instruction is executed, D8056 stores the current pulse frequency of output Q1. The value is updated every scan.
D8059	Current Pulse Frequency of PULS3 or RAMP2 (Q2)	While the PULS3 or RAMP2 instruction is executed, D8059 stores the current pulse frequency of output Q2. The value is updated every scan.

Timing Chart for Enable Pulse Counting
This program demonstrates a timing chart of the PULS1 instruction when pulse counting is enabled.

D202 = 1 (enable pulse counting)

- When input 10 is turned on, PULS1 starts to generate output pulses at the frequency designated by the value stored in data register D201. While the output pulses are sent out from output Q0, internal relay M50 remains on.
- When the quantity of generated output pulses reaches the preset value designated by data registers D203 and D204, PULS1 stops generating output pulses. Then internal relay M50 turns off, and internal relay M51 turns on.
- If the output pulse frequency value in D201 is changed while generating output pulses, the change takes effect in the next scan. When changing the pulse frequency, make sure that the timing of the change is much slower than the output pulse frequency, so that the pulse frequency is changed successfully.
- If input 10 is turned off before reaching the preset value, PULS1 stops generating output pulses immediately, then internal relay M50 turns off and internal relay M51 turns on.

Timing Chart for Disable Pulse Counting

This program demonstrates a timing chart of the PULS2 instruction without pulse counting.
$\left|\begin{array}{llll}\text { PULS } & \text { S1 } & \text { D1 } \\ 2 & \text { D100 } & \text { M20 }\end{array}\right| \quad$ D102 $=0$ (disable pulse counting)

- When input I1 is turned on, PULS2 starts to generate output pulses at the frequency designated by the value stored in data register D101. While the output pulses are sent out from output Q1, internal relay M20 remains on.
- When input I1 is turned off, PULS2 stops generating output pulses immediately, then internal relay M20 turns off and internal relay M21 turns on.
- If the output pulse frequency value in D101 is changed while generating output pulses, the change takes effect in the next scan. When changing the pulse frequency, make sure that the timing of the change is much slower than the output pulse frequency, so that the pulse frequency is changed successfully.

Sample Program: PULS1

This program demonstrates a user program of the PULS1 instruction to generate 5,000 pulses at a frequency of 200 Hz from output Q0, followed by 60,000 pulses at a frequency of 500 Hz .

Programming WindLDR

On the WindLDR editing screen, place the cursor where you want to insert the pulse instruction macro, and type PULSST. Enter parameters as shown below.

Device Settings

Device	Function	Description	Device Address (Value)
S1+0	Operation mode	Frequency range 200 Hz to 100 kHz	D0 (3)
S1+1	Output pulse frequency	200 Hz	D1 (20)
S1+2	Pulse counting	Enable pulse counting	D2 (1)
S1+3	Preset value (high word)	5,000	D3/D4 (5000)
S1+4	Preset value (low word)		
S1+5	Current value (high word)	0 to 60,000	
S1+6	Current value (low word)		

M8120 is the initialize pulse special internal relay.
When the CPU starts, PULSST macro designates parameters for pulse output in the first stage.

Pulse data update flag M1 is reset (pulse data not updated).
Pulse output complete flag M101 is turned off.
When M101 is turned on, two MOV instructions store second-stage parameters to data registers D1, D3, and D4.
D1 (output pulse frequency): $50(500 \mathrm{~Hz})$
D3/D4 (preset value): 60,000
Pulse data update flag M1 is set (pulse data updated).

When start input 10 is turned on, PULS1 starts to generate 5,000 output pulses at 200 Hz in the first stage.

Pulse output complete M101 is turned off.

PWM1 (Pulse Width Modulation 1)

When input is on, the PWM1 instruction generates a pulse output. The output pulse frequency is selected from $14.49,45.96$, or 367.65 Hz , and the output pulse width ratio is determined by source device S1.

PWM1 sends out output pulses from output Q0.
PWM1 can be programmed to generate a predetermined number of output pulses. When pulse counting is disabled, PWM1 generates output pulses while the start input for the PWM1 instruction remains on.

PWM2 (Pulse Width Modulation 2)

When input is on, the PWM2 instruction generates a pulse output. The output pulse frequency is selected from $14.49,45.96$, or 367.65 Hz , and the output pulse width ratio is determined by source device S1.
PWM2 sends out output pulses from output Q1.
PWM2 generates output pulses while the start input for the PWM2 instruction remains on. PWM2 cannot be programmed to generate a predetermined number of output pulses.

PWM3 (Pulse Width Modulation 3)

Not available on FC5A-16RK1/RS1

When input is on, the PWM3 instruction generates a pulse output. The output pulse frequency is selected from $14.49,45.96$, or 367.65 Hz , and the output pulse width ratio is determined by source device S1.
PWM3 sends out output pulses from output Q2.
PWM3 can be programmed to generate a predetermined number of output pulses. When pulse counting is disabled, PWM3 generates output pulses while the start input for the PWM3 instruction remains on.

Note: The PWM1, PWM2, and PWM3 instructions can be used only once in a user program. When PWM1, PWM2, or PWM3 is not used, unused output Q0, Q1, or Q2 can be used for another pulse instruction or ordinary output.

Applicable CPU Modules

FC5A-C10R2/C/D	FC5A-C16R2/C/D	FC5A-C24R2/C/D	FC5A-D16RK1/RS1			FC5A-D32K3/S3				FC5A-D12K1E/S1E	
-	-	-	X (PWM1 and PWM2)			X				X	
Valid Devices											
Device	Function		I	Q	M	R	T	C	D	Constant	Repeat
S1 (Source 1)	Control register		-	-	-	-	-	-	X	-	-
D1 (Destination 1)	Status relay		-	-	X	-	-	-	-	-	-

Source device S1 (control register) uses 8 data registers starting with the device designated as S1. Data registers D0-D1992, D2000D7992, and D10000-D49992 can be designated as S1. For details, see the following pages.
Destination device D1 (status relay) uses 3 internal relays starting with the device designated as D1. Internal relays M0 to M2550 can be designated as D1. The least significant digit of the internal relay number designated as D1 must be 0, otherwise the PWM instruction does not operate correctly. Special internal relays cannot be designated as D1. For details, see page 6-2 (Basic Vol.).

Source Device S1 (Control Register)

Store appropriate values to data registers starting with the device designated by S1 before executing the PWM instruction as required, and make sure that the values are within the valid range. Devices $\mathrm{S} 1+5$ through $\mathrm{S} 1+7$ are for read only.

Device	Function	Description	R/W
S1+0	Output pulse frequency	$\begin{aligned} & \text { FC5A-D16RK1/RS1, FC5A-D32K3/S3 } \\ & \text { 0: } 11.44 \mathrm{~Hz} \\ & \text { 1: } 45.78 \mathrm{~Hz} \\ & \text { 2: } 366.2 \mathrm{~Hz} \\ & \text { FC5A-D12K1E/S1E } \\ & \text { 0: } 15.26 \mathrm{~Hz} \\ & \text { 1: } 61.04 \mathrm{~Hz} \\ & \text { 2: } 488.3 \mathrm{~Hz} \end{aligned}$	R/W
S1+1	Pulse width ratio	1 to 100 (1% to 100% of the period determined by output pulse frequency $S 1+0$)	R/W
S1+2	Pulse counting	0 : Disable pulse counting 1: Enable pulse counting (PWM1/PWM3 only)	R/W
S1+3	Preset value (high word)	1 to 100,000,000 (05F5 E100h) (PWM1/PWM3 only)	R/W
S1+4	Preset value (low word)		
S1+5	Current value (high word)	1 to 100,000,000 (05F5 E100h) (PWM1/PWM3 only)	R
S1+6	Current value (low word)		
S1+7	Error status	0 to 5	R

Note: Devices for high and low words can be swapped on upgraded CPU modules with system program version 110 or higher. See page 5-46 (Basic Vol.).

S1+0 Output Pulse Frequency

The value stored in the data register designated by device $\mathrm{S} 1+0$ determines the pulse output frequency.

FC5A-D16RK1/RS1, FC5A-D32K3/S3

0: 11.44 Hz
1: 45.78 Hz
2: 366.2 Hz

FC5A-D12K1E/S1E

0: 15.26 Hz
1: 61.04 Hz
2: 488.3 Hz

S1+1 Pulse Width Ratio

The value stored in the data register designated by device $\mathrm{S} 1+1$ specifies the pulse width ratio of the pulse output in percent of the period determined by the output pulse frequency selected with S1+0. Valid values for device S1+1 are 1 through 100.

$$
\begin{aligned}
\text { Pulse Width } & =\text { Period } \times \frac{\text { Pulse Width Ratio }}{100} \\
& =\frac{1}{\text { Output Pulse Frequency }} \times \frac{\text { Pulse Width Ratio }}{100}
\end{aligned}
$$

S1+2 Pulse Counting

Pulse counting can be enabled for the PWM1 and PWM3 instructions only. With pulse counting enabled, PWM1 or PWM3 generates a predetermined number of output pulses as designated by devices S1+3 and S1+4. With pulse counting disabled, the PWM instruction generates output pulses while the start input for the PWM instruction remains on.

0: Disable pulse counting
1: Enable pulse counting (PWM1/PWM3 only)
When programming PWM2, store 0 to the data register designated by $\mathrm{S} 1+2$.

S1+3 Preset Value (High Word)

S1+4 Preset Value (Low Word)

With pulse counting enabled as described above, PWM1 or PWM3 generates a predetermined number of output pulses as designated by devices S1+3 and S1+4. The preset value can be 1 through 100,000,000 ($05 \mathrm{F5}$ E100h) stored in two consecutive data registers designated by $\mathrm{S} 1+3$ (high word) and $\mathrm{S} 1+4$ (low word).

When pulse counting is disabled for PWM1 or PWM3 or when programming PWM2, store 0 to data registers designated by S1+3 and S1+4.

S1+5 Current Value (High Word)

S1+6 Current Value (Low Word)

While the PWM1 or PWM3 instruction is executed, the output pulse count is stored in two consecutive data registers designated by devices S1+5 (high word) and S1+6 (low word). The current value can be 1 through 100,000,000 (05F5 E100h) and is updated in every scan.

S1+7 Error Status

When the start input for the PWM instruction is turned on, device values are checked. When any error is found in the device values, the data register designated by device S1+7 stores an error code.

Error Code	Description
0	Normal
1	Output pulse frequency designation error (S1+0 stores other than 0 through 2)
2	Pulse width ratio designation error (S1+1 stores other than 1 through 100)
3	Pulse counting designation error (S1+2 stores other than 0 and 1)
4	Preset value designation error (S1+3 and S1+4 store other than 1 through 100,000,000)
5	Invalid pulse counting designation for PWM2 (S1+2 stores 1)

Destination Device D1 (Status Relay)

Three internal relays starting with the device designated by D1 indicate the status of the PWM instruction. These devices are for read only.

Device	Function	Description	R/W
D1+0	Pulse output ON	$0:$ Pulse output OFF $1:$ Pulse output ON	R
D1+1	Pulse output complete	$0:$ Pulse output not complete $1:$ Pulse output complete	R
D1+2	Pulse output overflow	$0:$ Overflow not occurred $1:$ Overflow occurred (PWM1/PWM3 only)	R

D1+0 Pulse Output ON

The internal relay designated by device D1+0 remains on while the PWM instruction generates output pulses. When the start input for the PWM instruction is turned off or when the PWM1 or PWM3 instruction has completed generating a predetermined number of output pulses, the internal relay designated by device D1+0 turns off.

D1+1 Pulse Output Complete

The internal relay designated by device D1+1 turns on when the PWM1 or PWM3 instruction has completed generating a predetermined number of output pulses or when either PWM instruction is stopped to generate output pulses. When the start input for the PWM instruction is turned on, the internal relay designated by device D1+1 turns off.

D1+2 Pulse Output Overflow

The internal relay designated by device D1+2 turns on when the PWM1 or PWM3 instruction has generated more than the predetermined number of output pulses. When the start input for the PWM instruction is turned on, the internal relay designated by device D1+2 turns off.

Timing Chart for Enable Pulse Counting

This program demonstrates a timing chart of the PWM1 instruction when pulse counting is enabled.
$\left|\begin{array}{lcc|}\hline \text { PWM } & \text { S1 } & \text { D1 } \\ 1 & \text { D200 } & \text { M50 }\end{array}\right|$

D202 = 1 (enable pulse counting)

- When input 10 is turned on, PWM1 starts to generate output pulses at the frequency designated by the value stored in data register D200. The pulse width is determined by the value stored in data register D201. While the output pulses are sent out from output Q0, internal relay M50 remains on.
- When the quantity of generated output pulses reaches the preset value designated by data registers D203 and D204, PWM1 stops generating output pulses. Then internal relay M50 turns off, and internal relay M51 turns on.
- If the pulse width ratio value in D201 is changed while generating output pulses, the change takes effect in the next scan. When changing the pulse width ratio, make sure that the timing of the change is much slower than the output pulse frequency, so that the pulse width ratio is changed successfully.
- If input 10 is turned off before reaching the preset value, PWM1 stops generating output pulses immediately, then internal relay M50 turns off and internal relay M51 turns on.

Timing Chart for Disable Pulse Counting

This program demonstrates a timing chart of the PWM2 instruction without pulse counting.

| PWM | S1 | D1 |
| :--- | :--- | :---: | :---: |
| 2 | D100 | M20 |$| \quad$ D102 $=0$ (disable pulse counting)

- When input I1 is turned on, PWM2 starts to generate output pulses at the frequency designated by the value stored in data register D100. The pulse width is determined by the value stored in data register D101. While the output pulses are sent out from output Q1, internal relay M20 remains on.
- When input I1 is turned off, PWM2 stops generating output pulses immediately, then internal relay M20 turns off and internal relay M21 turns on.
- If the pulse width ratio value in D101 is changed while generating output pulses, the change takes effect in the next scan. When changing the pulse width ratio, make sure that the timing of the change is much slower than the output pulse frequency, so that the pulse width ratio is changed successfully.

Sample Program: PWM2

This program demonstrates a user program of the PWM2 instruction to generate pulses from output Q1, with an ON/OFF ratio of 30% while input 10 is off or 60% when input 10 is on.

Programming WindLDR

On the WindLDR editing screen, place the cursor where you want to insert the pulse instruction macro, and type PWMST. Enter parameters as shown below.

Device Settings

Device	Function	Description	Device Address (Value)
S1+0	Output pulse frequency	367.65 Hz	D0 (2)
S1+1	Pulse width ratio	30%	D1 (30)
S1+2	Pulse counting	Disable pulse counting	D2 (0)
S1+3	Preset value (high word)	Not used	D3
S1+4	Preset value (low word)	Not used	D4
S1+5	Current value (high word)	D5	
S1+6	Current value (low word)	D: Pulse output OFF	
S1+7	Error status	Dulse output ON	
D1+0	Pulse output ON	D7	
D1+1	Pulse output complete	0: Pulse output not complete $1: ~ P u l s e ~ o u t p u t ~ c o m p l e t e ~$	
D1+2	Pulse output overflow	0: Overflow not occurred $1: ~ O v e r f l o w ~ o c c u r r e d ~(P W M 1 / P W M 3 ~ o n l y) ~$	M101

M8120 is the initialize pulse special internal relay.
When the CPU starts, PWMST macro designates parameters for pulse output in the first stage.

When input IO is off, D1 (pulse width ratio) stores 30 (30\%).
When input 10 is on, D1 (pulse width ratio) stores 60 (60\%).
When input I1 is on, PWM2 generates output pulses of a 30% or 60% pulse width ratio from output Q1 depending whether input IO is off or on, respectively.

RAMP1 (Ramp Control 1)

When input is on, the RAMP1 instruction sends out a predetermined number of output pulses from output Q0. The output frequency changes in a trapezoidal pattern determined by source device S1. After starting the RAMP1 instruction, the output pulse frequency increases linearly to a predetermined constant value, remains constant at this value for some time, and then decreases linearly to the original value.

The frequency change rate or the frequency change time can be selected for acceleration and deceleration of the movement.

When input is off, the pulse output remains off. When input is turned on again, the RAMP1 instruction starts a new cycle of generating output pulses.

RAMP1 can also be used for reversible control to generate a control direction output or reverse output pulse from output Q1.

Note: The RAMP1 instruction can be used only once in a user program. When RAMP1 is used with reversible control disabled, unused output Q1 can be used for another pulse instruction PULS2, PWM2, or ZRN2 or ordinary output.

RAMP2 (Ramp Control 2)

Not available on FC5A-16RK1/RS1

When input is on, the RAMP2 instruction sends out a predetermined number of output pulses from output Q2. The output frequency changes in a trapezoidal pattern determined by source device S1. After starting the RAMP2 instruction, the output pulse frequency increases linearly to a predetermined constant value, remains constant at this value for some time, and then decreases linearly to the original value.

The frequency change rate or the frequency change time can be selected for acceleration and deceleration of the movement.

When input is off, the pulse output remains off. When input is turned on again, the RAMP2 instruction starts a new cycle of generating output pulses.

RAMP2 can not be used for reversible control.

Note: The RAMP2 instruction can be used only once in a user program.

Applicable CPU Modules

FC5A-C10R2/C/D	FC5A-C16R2/C/D	FC5A-C24R2/C/D	FC5A-D16RK1/RS1	FC5A-D32K3/S3	FC5A-D12K1E/S1E
-	-	-	$X(R A M P 1)$	X	X

Valid Devices

Device	Function	\mathbf{I}	\mathbf{Q}	\mathbf{M}	\mathbf{R}	\mathbf{T}	\mathbf{C}	\mathbf{D}	Constant	Repeat
S1 (Source 1)	Control register	-	-	-	-	-	-	X	-	-
D1 (Destination 1)	Status relay	-	-	X	-	-	-	-	-	-

Source device S1 (control register) uses 11 data registers starting with the device designated as S1. Data registers D0-D1989, D2000D7989, and D10000-D49989 can be designated as S1. For details, see the following pages.

Destination device D1 (status relay) uses 4 internal relays starting with the device designated as D1. Internal relays M0 to M2550 can be designated as D1. The least significant digit of the internal relay number designated as D1 must be 0, otherwise the RAMP instruction does not operate correctly. Special internal relays cannot be designated as D1. For details, see page 6-2 (Basic Vol.).

Source Device S1 (Control Register)

Store appropriate values to data registers starting with the device designated as S1 before executing the RAMP instruction as required, and make sure that the values are within the valid range. Devices S1+8 through S1+10 are for read only.

Device	Function	Description	R/W
S1+0	Operation mode	$\begin{aligned} & \text { 0: } 10 \mathrm{~Hz} \text { to } 1 \mathrm{kHz} \\ & \text { 1: } 100 \mathrm{~Hz} \text { to } 10 \mathrm{kHz} \\ & \text { 2: } 1 \mathrm{kHz} \text { to } 100 \mathrm{kHz} \\ & \text { 3: } 200 \mathrm{~Hz} \text { to } 100 \mathrm{kHz} \text { (Note 2) } \end{aligned}$	R/W
S1+1	Steady pulse frequency	When S1+0 (operation mode) = 0 to 2: 1 to 100 (\%) (1% to 100% of the maximum frequency of selected mode S1+0) When S1+0 (operation mode) =3: 20 to $10,000(\times 10 \mathrm{~Hz})$ (Note 3)	R/W
S1+2	Initial pulse frequency	When S1+0 (operation mode) = 0 to 2 : 1 to 100 (\%) (1% to 100% of the maximum frequency of selected mode S1+0) When S1+0 (operation mode) = 3: 20 to $10,000(\times 10 \mathrm{~Hz})$ (Note 3)	R/W
S1+3	Frequency change rate	When S1+0 (operation mode) = 0 to 2 : 1 to 100 (\%) (1% to 100% of the maximum frequency of selected mode S1+0)	R/W
	Frequency change time	When S1+0 (operation mode) $=3: 10$ to $10,000(\mathrm{~ms})$ (designated in increments of 10)	
S1+4	Reversible control enable	0: Reversible control disabled 1: Reversible control (single-pulse output) 2: Reversible control (dual-pulse output) (RAMP1 only)	R/W
S1+5	Control direction	0: Forward 1: Reverse	R/W
S1+6	Preset value (high word)	1 to 100,000,000 (05F5 E100h)	R/W
S1+7	Preset value (low word)		
S1+8	Current value (high word)	1 to 100,000,000 (05F5 E100h)	R
S1+9	Current value (low word)		
S1+10	Error status	When S1+0 (operation mode) $=0$ to $2: 0$ to 10 When S1+0 (operation mode) $=3$ or 4: 0 to 9	R

Note 1: Devices for high and low words can be swapped on upgraded CPU modules with system program version 110 or higher. See page 5-46 (Basic Vol.).

Note 2: The frequency range of mode 3 is from 250 Hz to 100 kHz for FC5A-D12K1E and FC5A-D12S1E.
Note 3: The frequency range of mode 3 is from 25 to $10,000(x 10 \mathrm{~Hz})$ for FC5A-D12K1E and FC5A-D12S1E.

S1+0 Operation Mode

The value stored in the data register designated by device S1+0 determines the frequency range of the pulse output.
0: 10 Hz to 1 kHz
: 100 Hz to 10 kHz
: 1 kHz to 100 kHz
: 200 Hz to 100 kHz

S1+1 Steady Pulse Frequency

When $\mathrm{S} 1+0$ is set to 0 through 2 , the value stored in the data register designated by device $\mathrm{S} 1+1$ specifies the frequency of the steady pulse output in percent of the maximum of the frequency range selected by S1+0. Valid values for device S1+1 are 1 through 100, thus the output pulse frequency can be 10 Hz to 1 kHz (operation mode 0), 100 Hz to 10 kHz (operation mode 1), or 1 kHz to 100 kHz (operation mode 2).

When S1+0 is set to 3 (200 Hz to 100 kHz), valid values for device S1+1 are 20 through 10,000 (in increments of 10) and the $\mathrm{S} 1+1$ value multiplied by 10 determines the steady pulse frequency, thus the output pulse frequency can be set in increments of 10 Hz . The output frequency error is $\pm 5 \%$ maximum.

Operation Mode (S1+0)	S1+1	Steady Pulse Frequency (Hz)
0 to 2	1 to 100	Maximum frequency selected by S1+0 \times S1+1 value (\%)
3	20 to 10,000	$S 1+1$ value $\times 10$

S1+2 Initial Pulse Frequency

When S1+0 is set to 0 through 2, the value stored in the data register designated by device S1+2 specifies the frequency of the initial pulse output in percent of the maximum of the frequency range selected by $\mathrm{S} 1+0$. Valid values for device S1+2 are 1 through 100, thus the initial pulse frequency can be 10 Hz to 1 kHz (operation mode 0), 100 Hz to 10 kHz (operation mode 1), or 1 kHz to 100 kHz (operation mode 2).

When S1+0 is set to 3 (200 Hz to 100 kHz), valid values for device S1+2 are 20 through 10,000 (in increments of 10) and the S1+2 value multiplied by 10 determines the initial pulse frequency, thus the initial pulse frequency can be set in increments of 10 Hz . The output frequency error is $\pm 5 \%$ maximum.

Operation Mode (S1+0)	S1+2	Initial Pulse Frequency (Hz)
0 to 2	1 to 100	Maximum frequency selected by S1+0 \times S1+2 value (\%)
3	20 to 10,000	$\mathrm{~S} 1+2$ value $\times 10$

S1+3 Frequency Change Rate / Frequency Change Time

When $\mathrm{S} 1+0$ is set to 0 through 2 , the value stored in the data register designated by device $\mathrm{S} 1+3$ determines the rate of pulse output frequency change for a period of 10 ms in percent of the maximum of the frequency range selected by $S 1+0$. Valid values for device S1+3 are 1 through 100, thus the frequency change rate can be 10 Hz to 1 kHz (operation mode 0), 100 Hz to 10 kHz (operation mode 1), or 1 kHz to 100 kHz (operation mode 2).

When S1+0 is set to 3, the value stored in the data register designated by device S1+3 determines the frequency change time. Valid values are 10 through 10,000 in increments of 10 , thus the frequency change time can be 10 to $10,000 \mathrm{~ms}$. The value at the lowest digit is omitted.

Operation Mode	Frequency Change Rate / Frequency Change Time	
0 to 2	Frequency change rate in $10 \mathrm{~ms} \mathrm{(Hz)}$	Maximum frequency (Hz) selected by S1 $+0 \times \mathrm{S} 1+3$ value (\%)
3	Frequency change time (ms)	Frequency change time (ms) selected by S1+3

The same frequency change rate and frequency change time apply to the accelerating and decelerating periods of the trapezoidal frequency change pattern.

S1+4 Reversible Control Enable

The value stored in the data register designated by device $\mathrm{S} 1+4$ specifies one of the output modes.
RAMP1 can designate 0 through 2 for device S1+4, while RAMP2 can designate 0 and 1 .

S1+4 Value	Reversible Control	Description
0	Reversible control disabled	Output Q0 or Q2 generates output pulses; used for single-direction control. Output Q0/Q2 Output Q1 can be used for PULS2, PWM2, ZRN2, or an ordinary output. When using RAMP2, output Q3 can be used for an ordinary output.
1	Reversible control (Single-pulse output)	Output Q0 or Q2 generates output pulses, and output Q1 or Q3 generates a direction control signal. Output Q1 or Q3 turns on or off depending on the value stored in data register designated by device $\mathrm{S} 1+5$ (control direction): 0 for forward or 1 for reverse.
$\mathbf{2}$ (RAMP1 only)	Reversible control (Dual-pulse output)	Output Q0 generates forward output pulses, and output Q1 generates reverse output pulses. Output Q0 or Q1 generates output pulses alternately depending on the value stored in data register designated by device S1+5 (control direction): 0 for forward or 1 for reverse.

If the value stored in the data register designated by device $S 1+4$ is changed after the start input for the RAMP instruction has been turned on, the change can take effect only after the CPU starts again.

S1+5 Control Direction

When $\mathrm{S} 1+4$ is set to 1 or 2 to enable reversible control, the value stored in the data register designated by device $\mathrm{S} 1+5$ specifies the control direction.

0: Forward
1: Reverse

S1+6 Preset Value (High Word)

S1+7 Preset Value (Low Word)

The RAMP1 or RAMP2 instruction generates a predetermined number of output pulses as designated by devices S1+6 and S1+7. The preset value can be 1 through 100,000,000 ($05 \mathrm{F5} 5 \mathrm{E} 100 \mathrm{~h}$) stored in two consecutive data registers designated by S1+6 (high word) and S1+7 (low word).

S1+8 Current Value (High Word)

S1+9 Current Value (Low Word)

While the RAMP1 or RAMP2 instruction is executed to generate output pulses, the output pulse count is stored in two consecutive data registers designated by devices S1+8 (high word) and S1+9 (low word). The current value can be 1 through 100,000,000 (05F5 E100h) and is updated in every scan.

S1+10 Error Status

When the start input for the RAMP instruction is turned on, device values are checked. When any error is found in the device values, the data register designated by device S1+10 stores an error code.

Error Code	Description
0	Normal
1	Operation mode designation error (S1+0 stores other than 0 through 3)
2	Initial pulse frequency designation error ($\mathrm{S} 1+2$ stores a value that is not within the frequency range of the initial pulse output.)
3	Preset value designation error (S1+6 and S1+7 store other than 1 through 100,000,000)
4	Steady pulse frequency designation error ($\mathrm{S} 1+1$ stores a value that is not within the frequency range of the steady pulse output.)
5	Frequency change rate designation error Modes 0 to 2: $\quad \mathrm{S} 1+3$ stores other than 1 through 100 Mode 3: \quad S1+3 stores other than 10 through 10,000
6	Reversible control enable designation error (S1+4 stores other than 0 through 2)
7	Control direction designation error (S1+5 stores other than 0 and 1)
8	The number of pulses for the frequency change areas calculated from the steady pulse frequency ($\mathrm{S} 1+1$), initial pulse frequency ($\mathrm{S} 1+2$), and frequency change rate/time $(\mathrm{S} 1+3)$ exceeds the preset value $(\mathrm{S} 1+6 / 7)$ of the total output pulses. To correct this error, reduce the value of the steady pulse frequency ($\mathrm{S} 1+1$) or initial pulse frequency $(\mathrm{S} 1+2)$, or increase the frequency change rate/time (S1+3).
9	The initial pulse frequency $(S 1+2)$ is equal to or larger than the steady pulse frequency $(S 1+1)$. Reduce the initial pulse frequency ($\mathrm{S} 1+2$) to a value smaller than the steady pulse frequency $(\mathrm{S} 1+1)$.
10	Modes 0 to 2: The frequency change rate (S1+3) is larger than the difference between the initial pulse frequency ($S 1+2$) and the steady pulse frequency $(S 1+1)$. Reduce the frequency change rate $(S 1+3)$ or the initial pulse frequency $(S 1+2)$.

Destination Device D1 (Status Relay)

Four internal relays starting with the device designated by D1 indicate the status of the RAMP instruction. These devices are for read only.

Device	Function	Description	R/W
D1+0	Pulse output ON	0: Pulse output OFF $1:$ Pulse output ON	R
D1+1	Pulse output complete	0: Pulse output not complete 1: Pulse output complete	R
D1+2	Pulse output status	0: Steady pulse output 1: Changing output pulse frequency	R
D1+3	Pulse output overflow	0: Overflow not occurred 1: Overflow occurred	R

D1+0 Pulse Output ON

The internal relay designated by device D1+0 remains on while the RAMP instruction generates output pulses. When the start input for the RAMP instruction is turned off or when the RAMP instruction has completed generating a predetermined number of output pulses, the internal relay designated by device D1+0 turns off.

D1+1 Pulse Output Complete

The internal relay designated by device D1+1 turns on when the RAMP instruction has completed generating a predetermined number of output pulses or when the RAMP instruction is stopped to generate output pulses. When the start input for the RAMP instruction is turned on, the internal relay designated by device D1+1 turns off.

D1+2 Pulse Output Status

The internal relay designated by device D1+2 turns on while the output pulse frequency is increasing or decreasing, and turns off when the output pulse frequency reaches the steady pulse frequency $(\mathrm{S} 1+1)$. While the pulse output is off, the internal relay designated by device D1+2 remains off.

D1+3 Pulse Output Overflow

The internal relay designated by device D1+3 turns on when the RAMP instruction has generated more than the predetermined number of output pulses ($S 1+6 / 7$). When an overflow occurs, the current value ($\mathrm{S} 1+8 / 9$) stops at the preset value ($\mathrm{S} 1+6 / 7$). When the start input for the RAMP instruction is turned on, the internal relay designated by device D1+3 turns off.

Special Data Registers for Pulse Outputs

Three additional special data registers store the current frequency of pulse outputs.

Device Address	Function	Description
D8055	Current Pulse Frequency of PULS1 or RAMP1 (Q0)	While the PULS1 or RAMP1 instruction is executed, D8055 stores the current pulse frequency of output Q0. The value is updated every scan.
D8056	Current Pulse Frequency of PULS2 or RAMP1 (Q1)	While the PULS2 or RAMP1 (reversible control dual-pulse output) instruction is executed, D8056 stores the current pulse frequency of output Q1. The value is updated every scan.
D8059	Current Pulse Frequency of PULS3 or RAMP2 (Q2)	While the PULS3 or RAMP2 instruction is executed, D8059 stores the current pulse frequency of output Q2. The value is updated every scan.

Timing Chart for Reversible Control Disabled

This program demonstrates a timing chart of the RAMP1 instruction when reversible control is disabled.
$\left|\begin{array}{llc|}\hline \text { RAMP } & \text { S1 } & \text { D1 } \\ 1 & \text { D200 } & \text { M50 } \\ \hline 1\end{array}\right|$

- When input IO is turned on, RAMP1 generates output pulses starting at the initial frequency designated by the value stored in data register D202. While the output pulses are sent out from output Q0, internal relay M50 remains on.
- Operation modes 0 through 2: The pulse frequency increases according to the frequency change rate value stored in data register D203.
- Operation mode 3: The pulse frequency increases as long as the frequency change time stored in data register D203.
- While the output pulse frequency is on the increase, internal relay M52 remains on.
- When the output pulse frequency reaches the steady pulse frequency designated by the value stored in data register D201, internal relay M52 turns off. When the output pulse frequency starts to decrease, internal relay M52 turns on again.
- When the quantity of generated output pulses reaches the preset value designated by data registers D206 and D207, RAMP1 stops generating output pulses. Then internal relay M50 and M52 turn off, and internal relay M51 turns on.
- If the parameter values in D200 through D207 (except for D204) are changed while generating output pulses, the change takes effect when start input 10 is turned on for the next cycle.
- If the value stored in D204 is changed after start input IO has been turned on, the change can take effect only after the CPU starts again.
- If start input IO is turned off before reaching the preset value, RAMP1 stops generating output pulses immediately, then internal relay M50 turns off and internal relay M51 turns on. When input I0 is turned on again, RAMP1 restarts to generate output pulses for another cycle, starting at the initial pulse frequency.

Timing Chart for Reversible Control with Single Pulse Output

This program demonstrates a timing chart of the RAMP1 instruction when reversible control is enabled with single pulse output.

D204 = 1 (reversible control with single pulse output)

- When input IO is turned on, RAMP1 generates output pulses starting at the initial frequency designated by the value stored in data register D202. While the output pulses are sent out from output Q0, internal relay M50 remains on.
- Operation modes 0 through 2: The pulse frequency increases according to the frequency change rate value stored in data register D203.
- Operation mode 3: The pulse frequency increases as long as the frequency change time stored in data register D203.
- While the output pulse frequency is on the increase, internal relay M52 remains on.
- Depending on the control direction designated by the value stored in data register D205, control direction output Q1 turns off or on while D205 stores 0 (forward) or 1 (reverse), respectively.
- When the output pulse frequency reaches the steady pulse frequency designated by the value stored in data register D201, internal relay M52 turns off. When the output pulse frequency starts to decrease, internal relay M52 turns on again.
- When the quantity of generated output pulses reaches the preset value designated by data registers D206 and D207, RAMP1 stops generating output pulses. Then internal relay M50 and M52 turn off, and internal relay M51 turns on.
- If the parameter values in D200 through D207 (except for D204) are changed while generating output pulses, the change takes effect when start input 10 is turned on for the next cycle.
- If the value stored in D204 is changed after start input IO has been turned on, the change can take effect only after the CPU starts again.
- If start input 10 is turned off before reaching the preset value, RAMP1 stops generating output pulses immediately, then internal relay M50 turns off and internal relay M51 turns on. When input IO is turned on again, RAMP1 restarts to generate output pulses for another cycle, starting at the initial pulse frequency.

Timing Chart for Reversible Control with Dual Pulse Output

This program demonstrates a timing chart of the RAMP1 instruction when reversible control is enabled with dual pulse output.

- When input 10 is turned on, RAMP1 generates output pulses starting at the initial frequency designated by the value stored in data register D202. While the output pulses are sent out from output Q0 or Q1, internal relay M50 remains on.
- Operation modes 0 through 2: The pulse frequency increases according to the frequency change rate value stored in data register D203.
- Operation mode 3: The pulse frequency increases as long as the frequency change time stored in data register D203.
- While the output pulse frequency is on the increase, internal relay M52 remains on.
- Depending on the control direction designated by the value stored in data register D205, output Q0 or Q1 sends out output pulses while D205 stores 0 (forward) or 1 (reverse), respectively.
- When the output pulse frequency reaches the steady pulse frequency designated by the value stored in data register D201, internal relay M52 turns off. When the output pulse frequency starts to decrease, internal relay M52 turns on again.
- When the quantity of generated output pulses reaches the preset value designated by data registers D206 and D207, RAMP1 stops generating output pulses. Then internal relay M50 and M52 turn off, and internal relay M51 turns on.
- If the parameter values in D200 through D207 (except for D204) are changed while generating output pulses, the change takes effect when start input 10 is turned on for the next cycle.
- If the value stored in D204 is changed after start input 10 has been turned on, the change can take effect only after the CPU starts again.
- If start input 10 is turned off before reaching the preset value, RAMP1 stops generating output pulses immediately, then internal relay M50 turns off and internal relay M51 turns on. When input I0 is turned on again, RAMP1 restarts to generate output pulses for another cycle, starting at the initial pulse frequency.

Sample Program: RAMP1 — Reversible Control Disabled

This program demonstrates a user program of the RAMP1 instruction to generate 48,000 pulses from output Q0.

Steady pulse frequency:	6 kHz
Initial pulse frequency:	300 Hz
Frequency change time:	$2,000 \mathrm{~ms}$
Reversible control enable:	Reversible control disabled
Preset value:	48,000 pulses total

Programming WindLDR

On the WindLDR editing screen, place the cursor where you want to insert the pulse instruction macro, and type RAMPST. Enter parameters as shown below.

Device Settings

Device	Function	Description	Device Address (Value)
S1+0	Operation mode	Frequency range 200 Hz to 100 kHz	D0 (3)
S1+1	Steady pulse frequency	6 kHz	D1 (600)
S1+2	Initial pulse frequency	300 Hz	D2 (30)
S1+3	Frequency change time	2,000 ms	D3 (2000)
S1+4	Reversible control enable	Reversible control disabled	D4 (0)
S1+5	Control direction	Not used (no effect)	D5
S1+6	Preset value (high word)		
S1+7	Preset value (low word)	48,000	D7 (48000)
S1+8	Current value (high word)		
S1+9	Current value (low word)	0 to 48,000	D8/D9
S1+10	Error status		D10
D1+0	Pulse output ON	0: Pulse output OFF 1: Pulse output ON	M100
D1+1	Pulse output complete	0: Pulse output not complete 1: Pulse output complete	M101
D1+2	Pulse output status	0: Steady pulse output 1: Changing output pulse frequency	M102
D1+3	Pulse output overflow	0: Overflow not occurred 1: Overflow occurred	M103

M8120 is the initialize pulse special internal relay.
When the CPU starts, RAMPST macro designates parameters for pulse output.
When start input 10 is turned on, RAMP1 starts to generate 48,000 output pulses.

Sample Program: RAMP1 — Reversible Control with Single Pulse Output

This program demonstrates a user program of the RAMP1 instruction to generate 100,000 pulses from output Q0. Control direction output Q1 turns off or on while input I1 is off or on to indicate the forward or reverse direction, respectively.

Steady pulse frequency:	10 kHz
Initial pulse frequency:	500 Hz
Frequency change time:	$2,000 \mathrm{~ms}$
Reversible control enable:	Reversible control with single pulse output Preset value:
	100,000 pulses total

Programming WindLDR

On the WindLDR editing screen, place the cursor where you want to insert the pulse instruction macro, and type RAMPST. Enter parameters as shown below.

Device Settings

Device	Function	Description	Device Address (Value)
S1+0	Operation mode	Frequency range 200 Hz to 100 kHz	D0 (3)
S1+1	Steady pulse frequency	10 kHz	D1 (1000)
S1+2	Initial pulse frequency	500 Hz	D2 (50)
S1+3	Frequency change time	$2,000 \mathrm{~ms}$	D3 (2000)
S1+4	Reversible control enable	Reversible control with single output	D4 (1)
S1+5	Control direction	Forward	D5 (0)
S1+6	Preset value (high word)	100,000	D6/D7 (100000)
S1+7	Preset value (low word)		D8/D9
S1+8	Current value (high word)	0 to 100,000	D10
S1+9	Current value (low word)		
S1+10	Error status		

M8120 is the initialize pulse special internal relay.
When the CPU starts, RAMPST macro designates parameters for pulse output.
When input 11 is off, D5 (control direction) stores 0 (forward).
When input 11 is on, D5 (control direction) stores 1 (reverse).
When start input IO is turned on, RAMP1 starts to generate 100,000 output pulses.

Sample Program: RAMP1 - Reversible Control with Dual Pulse Output

This program demonstrates a user program of the RAMP1 instruction to generate 1,000,000 pulses from output Q0 (forward pulse) or Q1 (reverse pulse) while input I1 is off or on, respectively.

Steady pulse frequency:
Initial pulse frequency:
Frequency change time:
Reversible control enable:
Preset value:

30 kHz
10 kHz
2,000 ms
Reversible control with dual pulse output
1,000,000 pulses total

Programming WindLDR

On the WindLDR editing screen, place the cursor where you want to insert the pulse instruction macro, and type RAMPST. Enter parameters as shown below.

Device Settings

Device	Function	Description	Device Address (Value)
S1+0	Operation mode	Frequency range 1 kHz to 100 kHz	D0 (2)
S1+1	Steady pulse frequency	30 kHz	D1 (30)
S1+2	Initial pulse frequency	10 kHz	D2 (10)
S1+3	Frequency change time	$2,000 \mathrm{~ms}$	D3 (2000)
S1+4	Reversible control enable	Reversible control with dual output	D4 (2)
S1+5	Control direction	Forward	D5 (0)
S1+6	Preset value (high word)	$1,000,000$	D6/D7 (1000000)
S1+7	Preset value (low word)	D8/D9	
S1+8	Current value (high word)	0 to $1,000,000$	D10
S1+9	Current value (low word)		
S1+10	Error status		D

M8120 is the initialize pulse special internal relay.
When the CPU starts, RAMPST macro designates parameters for pulse output.
When input I1 is off, D5 (control direction) stores 0 (forward).
When input I1 is on, D5 (control direction) stores 1 (reverse).
When start input 10 is turned on, RAMP1 starts to generate $1,000,000$ output pulses.

ZRN1 (Zero Return 1)

When input is on, the ZRN1 instruction sends out a pulse output of a predetermined high frequency from output QO. When a deceleration input turns on, the output frequency decreases to a creep frequency. When the deceleration input turns off, the ZRN1 instruction stops generating output pulses.

The output pulse width ratio is fixed at 50%.

ZRN2 (Zero Return 2)

ZRN3 (Zero Return 3)

Not available on FC5A-16RK1/RS1

When input is on, the ZRN2 instruction sends out a pulse output of a predetermined high frequency from output Q1. When a deceleration input turns on, the output frequency decreases to a creep frequency. When the deceleration input turns off, the ZRN2 instruction stops generating output pulses.
The output pulse width ratio is fixed at 50%.

Note: The ZRN1, ZRN2, and ZRN3 instructions can be used only once in a user program. When ZRN1, ZRN2, or ZRN3 is not used, unused output Q0, Q1, or Q2 can be used for another pulse instruction or ordinary output.

Applicable CPU Modules

| FC5A-C10R2/C/D | FC5A-C16R2/C/D | FC5A-C24R2/C/D | FC5A-D16RK1/RS1 | FC5A-D32K3/S3 | FC5A-D12K1E/S1E |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - | - | - | $X(Z R N 1$ and ZRN2) | X | X |

Valid Devices

Device	Function	\mathbf{I}	\mathbf{Q}	\mathbf{M}	\mathbf{R}	\mathbf{T}	\mathbf{C}	\mathbf{D}	Constant	Repeat
S1 (Source 1)	Control register	-	-	-	-	-	-	X	-	
S2 (Source 2)	Deceleration input	X	-	\mathbf{A}	-	-	-	-	-	
D1 (Destination 1)	Status relay	-	-	\mathbf{A}	-	-	-	-	-	

Source device S1 (control register) uses 5 data registers starting with the device designated as S1. Data registers D0-D1995, D2000D7995, and D10000-D49995 can be designated as S1. For details, see the following pages.
Source device S2 (deceleration input) can designate inputs IO to 1627 and internal relays M0 to M2557. Special internal relays cannot be designated as S2.

Destination device D1 (status relay) uses 2 internal relays starting with the device designated as D1. Internal relays M0 to M2550 can be designated as D1. The least significant digit of the internal relay number designated as D1 must be 0, otherwise the ZRN instruction does not operate correctly. Special internal relays cannot be designated as D1. For details, see page 6-2 (Basic Vol.).

Source Device S1 (Control Register)

Store appropriate values to data registers starting with the device designated by S1 before executing the ZRN instruction as required, and make sure that the values are within the valid range. Device S1+4 is for read only.

Device	Function	Description	R/W
S1+0	Initial operation mode	$\begin{aligned} & \text { 0: } 10 \mathrm{~Hz} \text { to } 1 \mathrm{kHz} \\ & \text { 1: } 100 \mathrm{~Hz} \text { to } 10 \mathrm{kHz} \\ & \text { 2: } 1 \mathrm{kHz} \text { to } 100 \mathrm{kHz} \\ & \text { 3: } 200 \mathrm{~Hz} \text { to } 100 \mathrm{kHz} \text { (Note 1) } \end{aligned}$	R/W
S1+1	Initial pulse frequency	When S1+0 (operation mode) = 0 to 2: 1 to 100 (\%) (1% to 100% of the maximum frequency of selected mode S1+0) When S1+0 (operation mode) =3: 20 to $10,000(\times 10 \mathrm{~Hz})$ (Note 2)	R/W
S1+2	Creep operation mode	$\begin{aligned} & \text { 0: } 10 \mathrm{~Hz} \text { to } 1 \mathrm{kHz} \\ & \text { 1: } 100 \mathrm{~Hz} \text { to } 10 \mathrm{kHz} \\ & \text { 2: } 1 \mathrm{kHz} \text { to } 100 \mathrm{kHz} \\ & \text { 3: } 200 \mathrm{~Hz} \text { to } 100 \mathrm{kHz} \text { (Note 1) } \end{aligned}$	R/W
S1+3	Creep pulse frequency	When S1+2 (operation mode) = 0 to 2 : 1 to 100 (\%) (1% to 100% of the maximum frequency of selected mode S1+2) When S1+2 (operation mode) = 3: 20 to $10,000(\times 10 \mathrm{~Hz})($ Note 2)	R/W
S1+4	Error status	0 to 2	R

Note 1: The frequency range of mode 3 is from 250 Hz to 100 kHz for FC5A-D12K1E and FC5A-D12S1E.
Note 2: The frequency range of mode 3 is from 25 to $10,000(x 10 \mathrm{~Hz})$ for FC5A-D12K1E and FC5A-D12S1E.

S1+0 Initial Operation Mode

The value stored in the data register designated by device S1+0 determines the frequency range of the high-frequency initial pulse output.

0: 10 Hz to 1 kHz
100 Hz to 10 kHz
1 kHz to 100 kHz
: 200 Hz to 100 kHz

S1+1 Initial Pulse Frequency

When $\mathrm{S} 1+0$ is set to 0 through 2 , the value stored in the data register designated by device $\mathrm{S} 1+1$ specifies the initial frequency of the pulse output in percent of the maximum of the frequency range selected by $\mathrm{S} 1+0$. Valid values for device S1+1 are 1 through 100, thus the initial pulse frequency can be 10 Hz to 1 kHz (operation mode 0), 100 Hz to 10 kHz (operation mode 1), or 1 kHz to 100 kHz (operation mode 2).
When S1+0 is set to $3(200 \mathrm{~Hz}$ to 100 kHz), valid values for device S1+1 are 20 through 10,000 and the S1+1 value multiplied by 10 determines the output pulse frequency, thus the output pulse frequency can be set in increments of 10 Hz . The pulse frequency error is $\pm 5 \%$ maximum.

Initial Operation Mode (S1+0)	S1+1	Initial Pulse Frequency (Hz)
0 to 2	1 to 100	Maximum frequency selected by S1+0 \times S1+1 value (\%)
3	20 to 10,000	$S 1+1$ value $\times 10$

S1+2 Creep Operation Mode

The value stored in the data register designated by device S1+2 determines the frequency range of the low-frequency creep pulse output.

0: 10 Hz to 1 kHz
: 100 Hz to 10 kHz
: 1 kHz to 100 kHz
3: 200 Hz to 100 kHz

S1+3 Creep Pulse Frequency

When $\mathrm{S} 1+2$ is set to 0 through 2 , the value stored in the data register designated by device $\mathrm{S} 1+3$ specifies the frequency of the creep pulse output in percent of the maximum of the frequency range selected by $\mathrm{S} 1+2$. Valid values for device S1+3 are 1 through 100, thus the initial pulse frequency can be 10 Hz to 1 kHz (operation mode 0), 100 Hz to 10 kHz (operation mode 1), or 1 kHz to 100 kHz (operation mode 2).

When S1+2 is set to 3 (200 Hz to 100 kHz), valid values for device S1+3 are 20 through 10,000 (in increments of 10) and the $S 1+3$ value multiplied by 10 determines the creep pulse frequency, thus the creep pulse frequency can be set in increments of 10 Hz . The pulse frequency error is $\pm 5 \%$ maximum.

Creep Operation Mode (S1+2)	S1+3	Creep Pulse Frequency (Hz)
0 to 2	1 to 100	Maximum frequency selected by S1+2 $\times \mathrm{S} 1+3$ value (\%)
3	20 to 10,000	$\mathrm{~S} 1+3$ value $\times 10$

S1+4 Error Status

When the start input for the ZRN instruction is turned on, device values are checked. When any error is found in the device values, the data register designated by device S1+4 stores an error code.

Error Code	Description
0	Normal
1	Operation mode designation error (S1+0 or S1+2 stores other than 0 through 3)
2	Output pulse frequency designation error (S1+1 stores a value that is not within the frequency range of the initial pulse output or S1+3 stores a value that is not within the frequency range of the creep pulse output.)

Source Device S2 (Deceleration Input)

When the deceleration input turns on while the ZRN instruction is generating output pulses of the initial pulse frequency, the pulse frequency is changed to the creep pulse frequency. When the deceleration input turns off, the ZRN instruction stops generating output pulses.
When using the ZRN1, ZRN2, and ZRN3 instructions, designate different input or internal relay numbers as deceleration inputs for the ZRN1, ZRN2, and ZRN3 instructions. If the same deceleration input is used and the ZRN1, ZRN2, and ZRN3 instructions are executed at the same time, the pulse outputs may not turn off when the deceleration input turns on.
The deceleration input is available in two types depending on the designated device address.

Device	Function	Description
S S2	High-speed deceleration input	$12, \mathrm{I}, \mathrm{I4}, \mathrm{I5}$
	Normal deceleration input	$10, \mathrm{I} 1, \mathrm{I}$ through I627, M0 through M2557

High-speed Deceleration Input (12, 13, 14, 15)
The high-speed deceleration input uses interrupt processing to read the deceleration input signal immediately without regard to the scan time.
When 12 through 15 are used as a deceleration input for the ZRN instruction, designate these input numbers as normal inputs in the Function Area Settings. If 12 through 15 used as a deceleration input are designated as an interrupt input, catch input, or high-speed counter input in the Function Area Settings, the inputs work as a deceleration input for the ZRN instruction; the designation in the Function Area Settings will have no effect.
When using a high-speed deceleration input, make sure that the input contact does not bounce. If the input signal contains chatter, the pulse output will be stopped immediately.

Normal Deceleration Input (IO, I1, I6 through I627, M0 through M2557)

The normal deceleration input reads the deceleration input signal when the input data is updated at the END processing, so the timing of accepting the deceleration input depends on the scan time.

Destination Device D1 (Status Relay)

Two internal relays starting with the device designated by D1 indicate the status of the ZRN instruction. These devices are for read only.

Device	Function	Description	R/W
D1+0	Pulse output ON	0: Pulse output OFF $1:$ Pulse output ON	R
D1+1	Pulse output complete	$0:$ Pulse output not complete $1:$ Pulse output complete	R

D1+0 Pulse Output ON

The internal relay designated by device D1+0 remains on while the ZRN instruction generates output pulses. When the start input or deceleration input for the ZRN instruction is turned off to stop generating output pulses, the internal relay designated by device D1+0 turns off.

D1+1 Pulse Output Complete

The internal relay designated by device D1+1 turns on when the deceleration input for the ZRN instruction is turned off to stop generating output pulses. When the start input for the ZRN instruction is turned on, the internal relay designated by device D1+1 turns off.

Timing Chart for Zero-return Operation

This program demonstrates a timing chart of the ZRN1 instruction when input I2 is used for a high-speed deceleration input.

$	$	10	ZRN S1 S2 D1 1 D200 I2 M10$\|$

- When input 10 is turned on, ZRN1 starts to generate output pulses of the initial pulse frequency designated by the value stored in data register D201. While the output pulses are sent out from output Q0, internal relay M10 remains on.
- When deceleration input $I 2$ is turned on, the output pulse frequency immediately reduces to the creep pulse frequency designated by the value stored in data register D203.
- When deceleration input I2 is turned off, ZRN1 stops generating output pulses immediately. Then internal relay M10 turns off, and internal relay M11 turns on.
- If parameter values in D200 through D203 are changed while generating output pulses, the change takes effect when start input IO is turned on for the next cycle.
- If start input IO is turned off while generating output pulses of either initial or creep pulse frequency, ZRN1 stops generating output pulses, then internal relay M10 turns off and internal relay M11 turns on. When input IO is turned on again, ZRN1 restarts to generate output pulses for another cycle, starting at the initial pulse frequency.
- If deceleration input I2 is already on when start input IO turns on, ZRN1 starts to generate pulse outputs of the creep pulse frequency.

Sample Program: ZRN1

This program demonstrates a user program of the ZRN1 instruction used for zero-return operation to generate output pulses of 3 kHz initial pulse frequency from output Q0 while input I1 is on. When deceleration input I3 is turned on, the output pulse frequency reduces to the creep pulse frequency of 800 Hz . When deceleration input I3 is turned off, ZRN1 stops generating output pulses.

Initial pulse frequency:	3 kHz
Creep pulse frequency:	800 Hz
Deceleration input:	l 3 (high-speed deceleration input)

Programming WindLDR

On the WindLDR editing screen, place the cursor where you want to insert the pulse instruction macro, and type ZRNST. Enter parameters as shown below.

Device Settings

Device	Function	Description	Device Address (Value)
S1+0	Initial operation mode	Frequency range 100 Hz to 10 kHz	D0 (1)
S1+1	Initial pulse frequency	$10 \mathrm{kHz} \times 30 \%=3 \mathrm{kHz}$	D1 (30)
S1+2	Creep operation mode	Frequency range 10 Hz to 1 kHz	D2 (0)
S1+3	Creep pulse frequency	$1 \mathrm{kHz} \times 80 \%=800 \mathrm{~Hz}$	D3 (80)
S1+4	Error status		D4
S2	Deceleration input	High-speed deceleration input	13
D1+0	Pulse output ON	0: Pulse output OFF 1: Pulse output ON	M100
D1+1	Pulse output complete	0: Pulse output not complete 1: Pulse output complete	M101

M8120 is the initialize pulse special internal relay.
When the CPU starts, ZRNST macro designates parameters for pulse output.
Pulse output ON flag M100 is turned off.
Pulse output complete flag M101 is turned off.
When start input I1 is turned on, ZRN1 starts to generate output pulses from output Q0.

14: PID Instruction

Introduction

The PID instruction implements a PID (proportional, integral, and derivative) algorithm with built-in auto tuning to determine PID parameters, such as proportional gain, integral time, derivative time, and control action automatically. In addition, advanced auto tuning automatically determines the PID parameters without the need for designating auto tuning parameters.

The PID instruction is primarily designed for use with an analog I/O module to read analog input data, and turns on and off a designated output to perform PID control in applications such as temperature control described in the application example on page 14-18. In addition, the PID instruction also generates an output manipulated variable for analog output module. When this device value is moved to an analog output module, a voltage (0 to 10 V DC) or current (4 to 20 mA DC) output can be generated.

- Special technical knowledge about the PID control is required to use the PID function of the MicroSmart. Use of the PID function without understanding the PID control may cause the MicroSmart to perform unexpected operation, resulting in disorder of the control system, damage, or accidents.
- When using the PID instruction for feedback control, emergency stop and interlocking circuits must be configured outside the MicroSmart. If such a circuit is configured inside the MicroSmart, failure of inputting the process variable may cause equipment damage or accidents.

PID (PID Control)

When input is on, auto tuning and/or PID action is executed according to the value (0 through 4) stored in a data register device assigned for operation mode.

Applicable CPU Modules and Quantity of PID Instructions
A maximum of 32 or 56 PID instructions can be used in a user program, depending on the CPU module type.

FC5A-C10R2/C/D	FC5A-C16R2/C/D	FC5A-C24R2/C/D	FC5A-D16RK1/RS1	FC5A-D32K3/S3	FC5A-D12K1E/S1E
-	-	$\times(32)$	$X(56)$	$X(56)$	$X(56)$

Valid Devices

Device	Function	I	Q	M	R	T	C	D	Constant
S1 (Source 1)	Control register	-	-	-	-	-	-	$\begin{gathered} \text { D0-D7973 } \\ \text { D10000-D49973 } \end{gathered}$	-
S2 (Source 2)	Control relay	-	Q0-Q620	MO-M2550	-	-	-	-	-
S3 (Source 3)	Set point	-	-	-	-	-	-	$\begin{gathered} \text { D0-D7999 } \\ \text { D10000-D49999 } \end{gathered}$	$\begin{gathered} 0-4095 \\ 0-50000 \end{gathered}$
S4 (Source 4)	Process variable (before conversion)	-	-	-	-	-	-	$\begin{gathered} \text { D0-D7999 } \\ \text { D10000-D49999 } \end{gathered}$	-
D1 (Destination 1)	Manipulated variable	-	-	-	-	-	-	$\begin{gathered} \text { D0-D7999 } \\ \text { D10000-D49999 } \end{gathered}$	-
Module Type	Depending on the analog 1/O module, select 0-4095 or 0-50000.								
Data Type	Select the data type from Word (W) or Integer (I) when using analog module type 0-50000.								

For the valid device address range, see pages 6-1 and 6-2 (Basic Vol.).
Source device S 1 (control register) uses 27 data registers starting with the device designated by S1. Data registers D0-D1973, D2000D7973, and D10000-D49973 can be designated by S1. For details, see the following pages.

Source device S2 (control relay) uses 8 points of outputs or internal relays starting with the device designated by S2. Outputs Q0 through Q620 and internal relays M0 through M2550 can be designated by S2. For details, see page 14-14.

Source device S3 (set point): When the linear conversion is disabled ($\mathrm{S} 1+4$ set to 0 or 2), the valid range of the set point (S3) is 0 through 4095 or 50,000 which can be designated using a data register or constant. When the linear conversion is enabled ($\mathrm{S} 1+4$ set to 1 or 3), the valid range is 0 to 65535 (word data type) or -32768 to 32767 (integer data type) that is a value after linear conversion. For details, see page 14-16.
Source device S4 (process variable) is designated using a data register allocated as analog input data of the connected analog I/O module. To read input data from an analog I/O module, designate a proper data register number depending on the slot position of the analog I/O module and the analog input channel number connected to the analog input source. For details, see page 14-16.
Source device $S 4$ is compatible with the binary data type of analog input modules, ranging from 0 to 60,000.
Destination device D1 (manipulated variable) stores -32768 through 32767 that is a calculation result of the PID action. For details, see page 14-16.

Module Type: Depending on the analog I/O module, select 0-4095 or 0-50000. These values determine the data range of the process variable (S 4) and the output manipulated variable for analog output module ($\mathrm{S} 1+24$).

Module Type	Analog I/O Module	
$0-4095$	FC4A-L03A1	
	FC4A-LO3AP1	
	FC4A-J2A1	
	FC4A-K1A1	
	FC4A-K4A1	
	FC4A-J4CN1	
	FC4A-J8C1	
	FC4A-J8AT1	(Note)
	FC4A-K2C1	

Note: The FC4A-J8AT1 analog input module for PTC and NTC thermistors can be used only in the range where the thermistor linearity is maintained.

Data Type: When using an analog I/O module type of 0-50000, select the data type from Word (W) or Integer (I). When using an analog I/O module type of 0-4095, the data type is fixed at Integer (I). The data type selection has an effect on the set point (S4), the linear conversion maximum and minimum values ($\mathrm{S} 1+5$ and $\mathrm{S} 1+6$), the high and low alarm values ($\mathrm{S} 1+14$ and $\mathrm{S} 1+15$), the AT set point ($\mathrm{S} 1+21$), and the output manipulated value for analog output mode ($\mathrm{S} 1+24$).

Source Device S1 (Control Register)

Store appropriate values to data registers starting with the device designated by S 1 before executing the PID instruction as required, and make sure that the values are within the valid range. Devices $\mathrm{S} 1+0$ through $\mathrm{S} 1+2, \mathrm{~S} 1+23$, and $\mathrm{S} 1+24$ are for read only. For programming the devices using a macro, see page 14-21.

Device	Function	Description	R/W
S1+0	Process variable (after conversion)	When S1+4 (control mode) $=1$ or 3 (enable linear conversion): Stores the process variable after conversion. When S1+4 (control mode) $=0$ or 2 (disable linear conversion): Stores the process variable without conversion.	R
S1+1	Output manipulated variable	Stores the output manipulated variable (manual mode output variable and AT output manipulated variable) in percent. 0 to 100 (0\% to 100\%)	R
S1+2	Operating status	Stores the operating or error status of the PID instruction.	R
S1+3	Operation mode	0: PID action 1: AT (auto tuning) + PID action 2: AT (auto tuning) 3: Advanced AT + PID action 4: Advanced AT	R/W
S1+4	Control mode (linear conversion and proportional term)	0: Disable linear conversion, proportional gain 1: Enable linear conversion, proportional gain 2: Disable linear conversion, proportional band 3: Enable linear conversion, proportional band	R/W
S1+5	Linear conversion maximum value	Word data type: 0 to 65535 Integer data type: -32768 to +32767	R/W
S1+6	Linear conversion minimum value	Word data type: 0 to 65535 Integer data type: -32768 to +32767	R/W
S1+7	Proportional term	```When S1+4 (control mode) = 0 or 1 (proportional gain): 1 to 10000 (\(0.01 \%\) to \(100.00 \%\)) 0 designates \(0.01 \%, \geq 10001\) designates \(100.00 \%\) When S1+4 (control mode) \(=2\) or 3 (proportional band): 1 to 10000 (\(\pm 0.01 \%\) to \(\pm 100.00 \%\)) 0 designates \(\pm 0.01 \%, \geq 10001\) designates \(\pm 100.00 \%\)```	R/W
S1+8	Integral time	1 to 65535 (0.1 sec to 6553.5 sec), 0 disables integral action	R/W
S1+9	Derivative time	1 to 65535 (0.1 sec to 6553.5 sec), 0 disables derivative action	R/W
S1+10	Integral start coefficient	1 to 100 (1% to 100%), 0 and ≥ 101 designate 100%	R/W
S1+11	Input filter coefficient	0 to 99 (0\% to 99\%), ≥ 100 designates 99\%	R/W
S1+12	Sampling period	1 to 10000 (0.01 sec to 100.00 sec) 0 designates $0.01 \mathrm{sec}, \geq 10001$ designates 100.00 sec	R/W
S1+13	Control period	1 to 500 (0.1 sec to 50.0 sec) 0 designates $0.1 \mathrm{sec}, \geq 501$ designates 50.0 sec	R/W
S1+14	High alarm value	When S1+4 (control mode) $=0$ or 2 (disable linear conversion): 0 to 4095 (≥ 4096 designates 4095) 0 to 50000 (≥ 50001 designates 50000) When S1+4 (control mode) $=1$ or 3 (enable linear conversion): Linear conversion min. \leq High alarm \leq Linear conversion max. When S1+14 < S1+6 (linear conversion min.), S1+6 becomes high alarm. When S1+14 > S1+5 (linear conversion max.), S1+5 becomes high alarm.	R/W
S1+15	Low alarm value	When S1+4 (control mode) $=0$ or 2 (disable linear conversion): 0 to 4095 (≥ 4096 designates 4095) 0 to 50000 (≥ 50001 designates 50000) When S1+4 (control mode) $=1$ or 3 (enable linear conversion): Linear conversion min. \leq Low alarm \leq Linear conversion max. When S1+15 < S1+6 (linear conversion min.), S1+6 becomes low alarm. When $\mathrm{S} 1+15>\mathrm{S} 1+5$ (linear conversion max.), S1+5 becomes low alarm.	R/W
S1+16	Output manipulated variable upper limit	0 to 100, 10001 to 10099 (other values designate 100)	R/W
S1+17	Output manipulated variable lower limit	0 to 100 (≥ 101 designates 100)	R/W
S1+18	Manual mode output manipulated variable	0 to 100 (≥ 101 designates 100)	R/W
S1+19	AT sampling period	1 to 10000 (0.01 sec to 100.00 sec) 0 designates $0.01 \mathrm{sec}, \geq 10001$ designates 100.00 sec	R/W

Device	Function	Description	R/W
S1+20	AT control period	1 to 500 (0.1 sec to 50.0 sec) 0 designates $0.1 \mathrm{sec}, \geq 501$ designates 50.0 sec	R/W
S1+21	AT set point	When S1+4 (control mode) $=0$ or 2: 0 to 4095 (≥ 4096 designates 4095) 0 to 50000 (≥ 50001 designates 50000) When S1+4 (control mode) $=1$ or 3 : Linear conversion min. \leq AT set point \leq Linear conversion max. When S1+21 < S1+6 (linear conversion min.), S1+6 becomes AT set point. When S1+21 > S1+5 (linear conversion max.), S1+5 becomes AT set point.	R/W
S1+22	AT output manipulated variable	0 to 100 (≥ 101 designates 100)	R/W
S1+23	Output manipulated variable \%	-32768 to 32767 (-327.68\% to 327.67\%)	R
S1+24	Output manipulated variable for analog output module	Converted from output manipulated variable ($\mathrm{S} 1+1$) depending on analog output module type 0 to 4095 (0% to 100\%) 0 to 50000 (0% to 100%)	R
S1+25	Proportional band offset value	$\begin{aligned} & -100 \text { to } 100(-100 \% \text { to } 100 \%) \\ & \leq-101 \text { designates }-100 \%, \geq 101 \text { designates } 100 \% \end{aligned}$	R/W
S1+26	Derivative gain	0 to 100 (0\% to 100\%) ≥ 101 designates 100%	R/W

Note: The value stored in the data register designated by S1+3 (operation mode) is checked only when the start input for the PID instruction is turned on. Values in all other control registers are refreshed in every scan.

S1+0 Process Variable (after conversion)

When the linear conversion is enabled ($\mathrm{S} 1+4$ set to 1 or 3), the data register designated by $\mathrm{S} 1+0$ stores the linear conversion result of the process variable (S4). The process variable (S1+0) takes a value between the linear conversion minimum value ($\mathrm{S} 1+6$) and the linear conversion maximum value ($\mathrm{S} 1+5$).

When the linear conversion is disabled ($\mathrm{S} 1+4$ is set to 0 or 2), the data register designated by $\mathrm{S} 1+0$ stores the same value as the process variable (S 4).

S1+1 Output Manipulated Variable

While the PID action is in progress, the data register designated by S1+1 holds 0 through 100 read from the manipulated variable, -32768 through 32767 , stored in the data register designated by D1, omitting values less than 0 and greater than 100. The percent value in $\mathrm{S} 1+1$ determines the ON duration of the control output ($\mathrm{S} 2+6$) in proportion to the control period (S1+13).

While manual mode is enabled with the auto/manual mode control relay ($\mathrm{S} 2+1$) set to on, $\mathrm{S} 1+1$ stores 0 through 100 read from the manual mode output manipulated variable ($\mathrm{S} 1+18$).
While auto tuning (AT) is in progress, $\mathrm{S} 1+1$ stores 0 through 100 read from the AT output manipulated variable ($\mathrm{S} 1+22$).

S1+2 Operating Status

The data register designated by S1+2 stores the operating or error status of the PID instruction.
Status codes 1 X through 6 X contain the time elapsed after starting auto tuning or PID action. X changes from 0 through 9 in 10 -minute increments to represent 0 through 90 minutes. The time code remains 9 after 90 minutes has elapsed. When the operation mode ($\mathrm{S} 1+3$) is set to 1 (AT+PID), the time code is reset to 0 at the transition from AT to PID.

Status codes 100 and above indicate an error, stopping the auto tuning or PID action. When these errors occur, a user program execution error will result, turning on the ERR LED and special internal relay M8004 (user program execution error). To continue operation, enter correct parameters and turn on the start input for the PID instruction.

Status Code	Description	Operation
$1 X$	AT in progress	
$2 X$	AT completed	
$5 X$	PID action in progress	PID action is normal.
$6 X$	PID set point $(S 3)$ is reached. Status code changes from $5 X$ to $6 X$ once the PID set point is reached.	

Status Code	Description	Operation
100	The operation mode (S1+3) is set to a value over 4.	PID action or AT is stopped because of incorrect parameter settings.
101	The control mode (S1+4) is set to a value over 3 .	
102	When the linear conversion is enabled ($\mathrm{S} 1+4$ to 1 or 3), the linear conversion maximum value ($\mathrm{S} 1+5$) and the linear conversion minimum value $(S 1+6)$ are set to the same value.	
103	The output manipulated variable upper limit ($\mathrm{S} 1+16$) is set to a value smaller than the output manipulated variable lower limit ($\mathrm{S} 1+17$).	
104	When the linear conversion is enabled ($\mathrm{S} 1+4$ set to 1 or 3), the AT set point ($\mathrm{S} 1+21$) is set to a value larger than the linear conversion maximum value ($\mathrm{S} 1+5$) or smaller than the linear conversion minimum value ($\mathrm{S} 1+6$).	
105	When the linear conversion is disabled ($\mathrm{S} 1+4$ set to 0 or 2), the AT set point ($\mathrm{S} 1+21$) is set to a value larger than 4095 or 50000, depending on the analog I/O module type.	
106	When the linear conversion is enabled ($\mathrm{S} 1+4$ set to 1 or 3), the set point (S 3) is set to a value larger than the linear conversion maximum value ($\mathrm{S} 1+5$) or smaller than the linear conversion minimum value ($\mathrm{S} 1+6$).	
107	When the linear conversion is disabled ($\mathrm{S} 1+4$ set to 0 or 2), the set point (S 3) is set to a value larger than 4095 or 50000, depending on the analog I/O module type.	
108	While the AT + PID action is executed (S1+3 set to 1 or 3), the process variable ($\mathrm{S} 1+0$) cannot reach the AT set point ($\mathrm{S} 1+21$). - In the direct control action (S2+0 on), the AT + PID action is started when the process variable is in the following relationship: Set point (S3) \leq Process variable $(S 1+0) \leq$ AT set point (S1+21) To solve this problem, set the AT set point to a value smaller than the process variable. - In the reverse control action (S2+0 off), the AT + PID action is started when the process variable is in the following relationship: AT set point (S1+21) \leq Process variable $(S 1+0) \leq$ Set point (S3) To solve this problem, set the AT set point to a value greater than the process variable.	
200	The current control action ($\mathrm{S} 2+0$) differs from that determined at the start of AT. To restart AT, set correct parameters referring to the probable causes listed below: - The manipulated variable (D1) or the control output (S2+6) is not outputted to the control target correctly. - The process variable is not stored to the device designated by S 4 . - The AT output manipulated variable ($\mathrm{S} 1+22$) is not set to a large value so that the process variable (S4) can change sufficiently. - A large disturbance occurred.	AT is stopped because of AT execution error.
201	AT failed to complete normally because the process variable (S4) fluctuated excessively. To restart AT, set the AT sampling period ($\mathrm{S} 1+19$) or the input filter coefficient $(\mathrm{S} 1+11)$ to a larger value.	
202	AT failed to produce correct results because the quantity of AT sampling cycles is too small. This error occurs when the AT sampling period ($\mathrm{S} 1+19$) is too long or when the difference is too small between the process variable at the start of AT sampling and the AT set point (S1+21). Set the AT set point ($\mathrm{S} 1+21$) to a value so that a sufficient step action can be performed, and set the AT sampling period ($\mathrm{S} 1+19$) to a value so that sampling can be performed more than 10 cycles.	

S1+3 Operation Mode

When the start input for the PID instruction is turned on, the CPU module checks the value stored in the data register designated by S1+3 and executes the selected operation. The selection cannot be changed while executing the PID instruction.

0: PID action
The PID action is executed according to the designated PID parameters such as proportional term (S1+7), integral time (S1+8), derivative time $(\mathrm{S} 1+9)$, sampling period $(\mathrm{S} 1+12)$, control period $(\mathrm{S} 1+13)$, and control action $(\mathrm{S} 2+0)$.

1: AT (auto tuning) + PID action
Auto tuning is first executed according to the designated AT parameters such as AT sampling period (S1+19), AT control period $(S 1+20)$, AT set point $(S 1+21)$, and AT output manipulated variable ($\mathrm{S} 1+22$). As a result of auto tuning, PID parameters are determined such as proportional term (S1+7), integral time (S1+8), derivative time (S1+9), and control direction (S2+0), then PID action is executed according to the derived PID parameters in addition to the designated PID parameters such as sampling period (S1 +12) and control period ($\mathrm{S} 1+13$).

2: AT (auto tuning)
Auto tuning is executed according to designated AT parameters to determine PID parameters such as proportional term (S1+7), integral time ($\mathrm{S} 1+8$), derivative time $(\mathrm{S} 1+9)$, and control direction ($\mathrm{S} 2+0$); PID action is not executed.

3: Advanced AT (auto tuning) + PID action
Auto tuning is first executed according to the AT parameters which are designated automatically, such as AT sampling period ($\mathrm{S} 1+19$), AT control period $(\mathrm{S} 1+20)$, AT set point $(\mathrm{S} 1+21)$, and AT output manipulated variable $(\mathrm{S} 1+22)$. As a result of auto tuning, PID parameters are determined such as proportional term ($S 1+7$), integral time ($\mathrm{S} 1+8$), derivative time ($\mathrm{S} 1+9$), sampling period $(S 1+12)$, control period (S1+13), and control direction (S2+0), then PID action is executed according to the derived PID parameters.

4: Advanced AT (auto tuning)
Auto tuning is executed according to automatically designated AT parameters, except for AT set point (S1+21), to determine PID parameters such as proportional term ($\mathrm{S} 1+7$), integral time $(\mathrm{S} 1+8)$, derivative time $(\mathrm{S} 1+9)$, sampling period ($\mathrm{S} 1+12$), control period ($\mathrm{S} 1+13$), and control direction ($\mathrm{S} 2+0$); PID action is not executed.

Device Designations by Operation Mode (S1+3)

The following table summarizes devices which have to be designated for each operation mode. When auto tuning is used, several devices are automatically determined and do not have to be designated.

Operation Mode (S1+3)		0	1	2	3	4
		PID action	$\begin{aligned} & \text { AT (auto tuning) } \\ & \text { + PID action } \end{aligned}$	AT (auto tuning)	Advanced AT + PID action	Advanced AT
S1+7	Proportional term	Designate *	Auto *	Auto	Auto *	Auto
S1+8	Integral time	Designate *	Auto *	Auto	Auto *	Auto
S1+9	Derivative time	Designate *	Auto *	Auto	Auto *	Auto
S1+12	Sampling period	Designate *	Designate *	-	Auto *	Auto
S1+13	Control period	Designate *	Designate *	-	Auto *	Auto
S1+19	AT sampling period	-	Designate	Designate	Auto	Auto
S1+20	AT control period	-	Designate	Designate	Auto	Auto
S1+21	AT set point	-	Designate	Designate	Auto	Designate
S1+22	AT output manipulated variable	-	Designate	Designate	Auto	Auto
S2+0	Control action	Designate	Auto	Auto	Auto	Auto

* While the PID action is in progress (operating status S1+1 is 5 X or 6 X), these values can be changed for fine tuning. Be careful improper changes may result in undesired operation.

S1+4 Control Mode (Linear Conversion and Proportional Term)

The control mode designates whether to disable or enable the linear conversion and whether the proportional term uses the proportional gain or proportional band.

Control Mode (S1+4)	Linear Conversion	Proportional Term
0	Disable linear conversion	Proportional gain
1	Enable linear conversion	Proportional gain
2	Disable linear conversion	Proportional band
3	Enable linear conversion	Proportional band
Others	Error status 101	

Note: While the PID action is in progress (operating status S1+1 is 5 X or 6 X), do not change the control mode (S1+4), otherwise the PID action may result in an error and stop operation.

Disable linear conversion

Linear conversion is not executed. When the linear conversion is disabled ($\mathrm{S} 1+4$ set to 0 or 2), the analog input data (0 through 4095 or 50000, depending on the analog I/O module type) from the analog I/O module is stored to the process variable (S4), and the same value is stored to the process variable ($\mathrm{S} 1+0$) without conversion.

Enable linear conversion

The linear conversion function is useful for scaling the process variable to the actual measured value in engineering units.
When the linear conversion is enabled ($\mathrm{S} 1+4$ set to 1 or 3), the analog input data (0 through 4095 or 50000, depending on the ana$\log \mathrm{I} / \mathrm{O}$ module type) from the analog I/O module is linear-converted, and the result is stored to the process variable (S1+0). When using the linear conversion, set proper values to the linear conversion maximum value ($S 1+5$) and linear conversion minimum value $(S 1+6)$ to specify the linear conversion output range. When using the linear conversion function in a temperature control application, temperature values can be used to designate the set point (S 3), high alarm value ($\mathrm{S} 1+14$), low alarm value ($\mathrm{S} 1+15$), and AT set point ($\mathrm{S} 1+21$), and also to read the process variable ($\mathrm{S} 1+0$).

Proportional gain or proportional band

The proportional term (S1+7) can be selected from the proportional gain (S1+4 set to 0 or 1) or the proportional band (S1+4 set to 2 or 3).

S1+5 Linear Conversion Maximum Value

When the linear conversion is enabled ($S 1+4$ set to 1 or 3), set the linear conversion maximum value to the data register designated by S1+5. Valid values are 0 through 65535 (word data type) or -32768 through 32767 (integer data type), and the linear conversion maximum value must be larger than the linear conversion minimum value ($\mathrm{S} 1+6$). Select an appropriate value for the linear conversion maximum value to represent the maximum value of the input signal to the analog I/O module.

When the linear conversion is disabled ($\mathrm{S} 1+4$ set to 0 or 2), you do not have to set the linear conversion maximum value.

S1+6 Linear Conversion Minimum Value

When the linear conversion is enabled ($\mathrm{S} 1+4$ set to 1 or 3), set the linear conversion minimum value to the data register designated by S1+6. Valid values are 0 through 65535 (word data type) or -32768 through 32767 (integer data type), and the linear conversion minimum value must be smaller than the linear conversion maximum value ($\mathrm{S} 1+5$). Select an appropriate value for the linear conversion minimum value to represent the minimum value of the input signal to the analog I/ O module.

When the linear conversion is disabled ($\mathrm{S} 1+4$ set to 0 or 2), you do not have to set the linear conversion minimum value.

Example:

When type K thermocouple is connected, the analog input data ranges from 0 through 4095. To convert the analog input data to actual measured temperature values, set the following parameters.

Linear conversion ($\mathrm{S} 1+4$): 1 or 3 (enable linear conversion)
Linear conversion maximum value $(\mathrm{S} 1+5)$:
Linear conversion minimum value ($\mathrm{S} 1+6$):
$1300\left(1300^{\circ} \mathrm{C}\right)$
$0\left(0^{\circ} \mathrm{C}\right)$
Process Variable after Conversion (S1+0)

S1+7 Proportional Term

The proportional term is a parameter to determine the amount of proportional action in terms of the proportional gain or proportional band according to the selection by the control mode ($\mathrm{S} 1+4$).
When auto tuning or advanced auto tuning is used by setting the operation mode (S1+3) to 1 (AT+PID), 2 (AT), 3 (advanced AT+PID), or 4 (advanced AT), a proportional term is determined automatically and does not have to be designated by the user.

When auto tuning is not used by setting the operation mode (S1+3) to 0 (PID), set a required value of 1 through 10000 to specify a proportional gain of 0.01% through 100.00% or a proportional band of $\pm 0.01 \%$ through $\pm 100.00 \%$ to the data register designated by $\mathrm{S} 1+7$. When $\mathrm{S} 1+7$ stores 0 , the proportional gain is set to 0.01% or the proportional band is set to $\pm 0.01 \%$. When $\mathrm{S} 1+7$ stores a value larger than 10000 , the proportional gain is set to 100.00% or the proportional band is set to $\pm 100.00 \%$.
When the proportional gain is selected, the output manipulated variable $(S 1+1)$ is calculated from the deviation between the set point (S3) and the process variable (S4). When the proportional gain is set to a large value, the proportional band becomes small and the response becomes fast, but overshoot and hunching will be caused. In contrast, when the proportional gain is set to a small value, overshoot and hunching are suppressed, but response to disturbance will become slow.
The proportional band is the range of inputs (deviation between the set point and the process variable) required for the output manipulated variable ($\mathrm{S} 1+1$) to change from 0% to 100%. The output manipulated variable $(S 1+1)$ of the proportional term is calculated from the current input with respect to the proportional band. When the proportional band is selected, the integral action is enabled only while the process variable $(S 1+0)$ is within the proportional band, that is while the calculated value for the output manipulated variable is between 0% and 100%. While the process variable ($\mathrm{S} 1+0$) is out of the proportional band, the integral action is disabled.
While the PID action is in progress, the proportional term value can be changed by the user.

S1+8 Integral Time

When only the proportional action is used, a certain amount of difference (offset) between the set point (S3) and the process variable ($\mathrm{S} 1+0$) remains after the control target has reached a stable state. An integral action is needed to reduce the offset to zero. The integral time is a parameter to determine the amount of integral action.
When auto tuning or advanced auto tuning is used by setting the operation mode (S1+3) to 1 (AT+PID), 2 (AT), 3 (advanced AT+PID), or 4 (advanced AT), an integral time is determined automatically and does not have to be designated by the user.
When auto tuning is not used by setting the operation mode (S1+3) to 0 (PID), set a required value of 1 through 65535 to specify an integral time of 0.1 sec through 6553.5 sec to the data register designated by $\mathrm{S} 1+8$. When $\mathrm{S} 1+8$ is set to 0 , the integral action is disabled.
When the integral time is too short, the integral action becomes too large, resulting in hunching of a long period. In contrast, when the integral time is too long, it takes a long time before the process variable ($\mathrm{S} 1+0$) reaches the set point (S 3).

The integral action is executed within the range between the plus proportional band and the minus proportional band. When the process variable $(S 1+0)$ runs out of the proportional band due to an external noise or a change in the set point, the integral action is disabled. As a result, the manipulated variable quickly follows up the set point, with smaller overshoot and undershoot.

While the PID action is in progress, the integral time value can be changed by the user.

S1+9 Derivative Time

The derivative action is a function to adjust the process variable $(\mathrm{S} 1+0)$ to the set point (S 3) by increasing the manipulated variable (D1) when the set point (S3) is changed or when the difference between the process variable (S1+0) and the set point (S3) is increased due to disturbance. The derivative time is a parameter to determine the amount of derivative action.

When auto tuning is used by setting the operation mode (S1+3) to 1 (AT+PID), 2 (AT), 3 (advanced AT+PID), or 4 (advanced AT), a derivative time is determined automatically and does not have to be designated by the user.
When auto tuning is not used by setting the operation mode (S1+3) to 0 (PID), set a required value of 1 through 65535 to specify a derivative time of 0.1 sec through 6553.5 sec to the data register designated by $\mathrm{S} 1+9$. When $\mathrm{S} 1+9$ is set to 0 , the derivative action is disabled.

When the derivative time is set to a large value, the derivative action becomes large. When the derivative action is too large, hunching of a short period is caused.

While the PID action is in progress, the derivative time value can be changed by the user.

S1+10 Integral Start Coefficient

The integral start coefficient is a parameter to determine the point, in percent of the proportional term, where to start the integral action. Normally, the data register designated by S1+10 (integral start coefficient) stores 0 to select an integral start coefficient of 100% and the integral start coefficient disable control relay (S2+3) is turned off to enable integral start coefficient. When the PID action is executed according to the PID parameters determined by auto tuning, proper control is ensured with a moderate overshoot and no offset.
It is also possible to set a required value of 1 through 100 to start the integral action at 1% through 100% to the data register designated by $\mathrm{S} 1+10$. When $\mathrm{S} 1+10$ stores 0 or a value larger than 100 , the integral start coefficient is set to 100%.

To enable the integral start coefficient, turn off the integral start coefficient disable control relay (S2+3). When $\mathrm{S} 2+3$ is turned on, the integral start coefficient is disabled and the integral term takes effect at the start of the PID action.
When the integral term is enabled at the start of the PID action, a large overshoot is caused. The overshoot can be suppressed by delaying the execution of the integral action in coordination with the proportional term. The PID instruction is designed to achieve proper control with a small or moderate overshoot when the integral start coefficient is set to 100%. Overshoot is most suppressed when the integral start coefficient is set to 1% and is least suppressed when the integral start coefficient is set to 100%. When the integral start coefficient is too small, overshoot is eliminated but offset is caused.

S1+11 Input Filter Coefficient

The input filter has an effect to smooth out fluctuations of the process variable (S4). Set a required value of 0 through 99 to specify an input filter coefficient of 0% through 99% to the data register designated by $\mathrm{S} 1+11$. When $\mathrm{S} 1+11$ stores a value larger than 99, the input filter coefficient is set to 99%. The larger the coefficient, the larger the input filter effect.
The input filter is effective for reading a process variable (S4) such as temperature data when the value changes at each sampling time. The input filter coefficient is in effect during auto tuning and PID action.

S1+12 Sampling Period

The sampling period determines the interval to execute the PID instruction. Set a required value of 1 through 10000 to specify a sampling period of 0.01 sec through 100.00 sec to the data register designated by $\mathrm{S} 1+12$. When $\mathrm{S} 1+12$ stores 0 , the sampling period is set to 0.01 sec . When S1+12 stores a value larger than 10000 , the sampling period is set to 100.00 sec.

When a sampling period is set to a value smaller than the scan time, the PID instruction is executed every scan.
Example - Sampling period: $\mathbf{4 0} \mathbf{~ m s}$, Scan time: $\mathbf{8 0} \mathbf{~ m s}$ (Sampling period \leq Scan time)

Example - Sampling period: $\mathbf{8 0} \mathbf{m s}$, Scan time: 60 ms (Sampling period > Scan time)

Note: While the PID action is in progress (operating status S1+2 is 5 X or 6 X), the sampling period can be changed anytime. The sampling period as well as the integral time ($\mathrm{S} 1+8$) and derivative time ($\mathrm{S} 1+9$) has an effect on the calculation of integral manipulated variable and derivative manipulated variable. When the sampling time is changed during PID action, the sampling time determined at the start of the PID action is used to calculate the integral manipulated variable and derivative manipulated variable.

S1+13 Control Period

The control period determines the duration of the ON/OFF cycle of the control output (S2+6) that is turned on and off according to the output manipulated variable ($\mathrm{S} 1+1$) calculated by the PID action or derived from the manual mode output manipulated variable ($\mathrm{S} 1+18$). Set a required value of 1 through 500 to specify a control period of 0.1 sec through 50.0 sec to the data register designated by $\mathrm{S} 1+13$. When $\mathrm{S} 1+13$ stores 0 , the control period is set to 0.1 sec . When S1+13 is set to a value larger than 500 , the control period is set to 50.0 sec .

The ON pulse duration of the control output ($\mathrm{S} 2+6$) is determined by the product of the control period $(\mathrm{S} 1+13)$ and the output manipulated variable ($\mathrm{S} 1+1$).

Example - Control period: $\mathbf{5} \sec (\mathbf{S} 1+13$ is set to 50$)$

S1+14 High Alarm Value

The high alarm value is the upper limit of the process variable $(\mathbf{S 1 + 0})$ to generate an alarm. When the process variable is higher than or equal to the high alarm value, the high alarm output control relay ($\mathrm{S} 2+4$) is turned on. When the process variable is lower than the high alarm value, the high alarm output control relay $(\mathrm{S} 2+4)$ is turned off.

When the linear conversion is disabled ($\mathrm{S} 1+4$ set to 0 or 2), set a required high alarm value of 0 through 4095 or 50000 depending on the analog I/O module type to the data register designated by $\mathrm{S} 1+14$. When $\mathrm{S} 1+14$ stores a value larger than 4095 or 50000, the high alarm value is set to 4095 or 50000 , respectively.

When the linear conversion is enabled (S1+4 set to 1 or 3), set a required high alarm value of 0 through 65535 (word data type) or -32768 through 32767 (integer data type) to the data register designated by S1+14. The high alarm value must be larger than or equal to the linear conversion minimum value ($\mathrm{S} 1+6$) and must be smaller than or equal to the linear conversion maximum value ($\mathrm{S} 1+5$). If the high alarm value is set to a value smaller than the linear conversion minimum value ($S 1+6$), the linear conversion minimum value will become the high alarm value. If the high alarm value is set to a value larger than the linear conversion maximum value ($S 1+5$), the linear conversion maximum value will become the high alarm value.

S1+15 Low Alarm Value

The low alarm value is the lower limit of the process variable ($\mathrm{S} 1+0$) to generate an alarm. When the process variable is lower than or equal to the low alarm value, the low alarm output control relay ($\mathrm{S} 2+5$) is turned on. When the process variable is higher than the low alarm value, the low alarm output control relay ($\mathrm{S} 2+5$) is turned off.
When the linear conversion is disabled (S1+4 set to 0 or 2), set a required low alarm value of 0 through 4095 or 50000 depending on the analog I/O module type to the data register designated by $\mathrm{S} 1+15$. When $\mathrm{S} 1+15$ stores a value larger than 4095 or 50000, the low alarm value is set to 4095 or 50000, respectively.
When the linear conversion is enabled ($\mathrm{S} 1+4$ set to 1 or 3), set a required low alarm value of 0 through 65535 (word data type) or -32768 through 32767 (integer data type) to the data register designated by S1+15. The low alarm value must be larger than or equal to the linear conversion minimum value ($\mathrm{S} 1+6$) and must be smaller than or equal to the linear conversion maximum value ($(S 1+5)$. If the low alarm value is set to a value smaller than the linear conversion minimum value ($\mathrm{S} 1+6$), the linear conversion minimum value will become the low alarm value. If the low alarm value is set to a value larger than the linear conversion maximum value $(S 1+5)$, the linear conversion maximum value will become the low alarm value.

S1+16 Output Manipulated Variable Upper Limit

The value contained in the data register designated by S1+16 specifies the upper limit of the output manipulated variable (S1+1) in two ways: direct and proportional.

S1+16 Value 0 through 100

When S1+16 contains a value 0 through 100, the value directly determines the upper limit of the output manipulated variable ($S 1+1$). If the manipulated variable (D1) is greater than or equal to the upper limit value ($S 1+16$), the upper limit value is outputted to the output manipulated variable ($\mathrm{S} 1+1$). Set a required value of 0 through 100 for the output manipulated variable upper limit to the data register designated by $\mathrm{S} 1+16$. When $\mathrm{S} 1+16$ stores a value larger than 100 (except 10001 through 10099), the output manipulated variable upper limit ($\mathrm{S} 1+16$) is set to 100 . The output manipulated variable upper limit ($\mathrm{S} 1+16$) must be larger than the output manipulated variable lower limit ($\mathrm{S} 1+17$).

To enable the manipulated variable upper limit, turn on the output manipulated variable limit enable control relay $(S 2+2)$. When $S 2+2$ is turned off, the output manipulated variable upper limit ($\mathrm{S} 1+16$) has no effect.

S1+16 Value 10001 through 10099 (disables Output Manipulated Variable Lower Limit S1+17)

When $S 1+16$ contains a value 10001 through 10099 , the value minus 10000 determines the ratio of the output manipulated variable ($S 1+1$) in proportion to the manipulated variable (D1) of 0 through 100 . The output manipulated variable ($\mathrm{S} 1+1$) can be calculated by the following equation:

Output manipulated variable $(\mathrm{S} 1+1)=$ Manipulated variable $(\mathrm{D} 1) \times(\mathrm{N}-10000)$
where N is the value stored in the output manipulated variable upper limit (S1+16), 10001 through 10099.
If the manipulated variable (D1) is greater than or equal to 100,100 multiplied by ($N-10000$) is outputted to the output manipulated variable ($\mathrm{S} 1+1$). If D 1 is less than or equal to 0,0 is outputted to $\mathrm{S} 1+1$.
To enable the manipulated variable upper limit, turn on the output manipulated variable limit enable control relay ($\mathrm{S} 2+2$). When $\mathrm{S} 2+2$ is turned off, the output manipulated variable upper limit ($\mathrm{S} 1+16$) has no effect.

When $\mathrm{S} 1+16$ is set to a value 10001 through 10099, the output manipulated variable lower limit ($\mathrm{S} 1+17$) is disabled.

S1+17 Output Manipulated Variable Lower Limit

The value contained in the data register designated by $\mathrm{S} 1+17$ specifies the lower limit of the output manipulated variable ($\mathrm{S} 1+1$). Set a required value of 0 through 100 for the output manipulated variable lower limit to the data register designated by $\mathrm{S} 1+17$. When $\mathrm{S} 1+17$ stores a value larger than 100 , the output manipulated variable lower limit is set to 100 .
The output manipulated variable lower limit ($\mathrm{S} 1+17$) must be smaller than the output manipulated variable upper limit (S1+16).
To enable the output manipulated variable lower limit, turn on the output manipulated variable limit enable control relay (S2+2), and set the output manipulated variable upper limit (S1+16) to a value other than 10001 through 10099. When the manipulated variable (D1) is smaller than or equal to the specified lower limit, the lower limit value is outputted to the output manipulated variable ($\mathrm{S} 1+1$).
When the output manipulated variable limit enable control relay ($\mathrm{S} 2+2$) is turned off, the output manipulated variable lower limit (S1+17) has no effect.

S1+18 Manual Mode Output Manipulated Variable

The manual mode output manipulated variable specifies the output manipulated variable (0 through 100) for manual mode. Set a required value of 0 through 100 for the manual mode output manipulated variable to the data register designated by $\mathrm{S} 1+18$. When $\mathrm{S} 1+18$ stores a value larger than 100 , the manual mode output manipulated variable is set to 100.

To enable the manual mode, turn on the auto/manual mode control relay ($\mathrm{S} 2+1$). While in manual mode, the PID action is disabled. The specified value of the manual mode output manipulated variable ($\mathrm{S} 1+18$) is outputted to the output manipulated variable ($\mathrm{S} 1+1$) and the output manipulated variable for analog output module ($\mathrm{S} 1+24$). The control output ($\mathrm{S} 2+6$) is turned on and off according to the control period $(\mathrm{S} 1+13)$ and the manual mode output manipulated variable ($\mathrm{S} 1+18$).

The $\mathrm{S} 1+18$ value has no effect on the manipulated value (D1) and the output manipulated variable \% (S1+23).

Auto Tuning (AT) and Advanced Auto Tuning (Advanced AT)

When auto tuning is selected with the operation mode (S1+3) set to 1 (AT+PID) or 2 (AT), the auto tuning is executed before starting PID control to determine PID parameters, such as proportional term (S1+7), integral time (S1+8), derivative time ($\mathrm{S} 1+9$), and control action ($\mathrm{S} 2+0$) automatically. The MicroSmart uses the step response method to execute auto tuning. To enable auto tuning, set four parameters for auto tuning before executing the PID instruction, such as AT sampling period (S1+19), AT control period (S1+20), AT set point (S1+21), and AT output manipulated variable (S1+22).
When advanced auto tuning is selected with the operation mode (S1+3) set to 3 (advanced AT+PID) or 4 (advanced AT), most AT parameters are determined automatically and do not have to be designated by the user. Only when advanced auto tuning is used with $S 1+3$ set to 4 (advanced AT), the user has to designate the AT set point ($\mathrm{S} 1+21$).

AT Parameters

Before executing auto tuning, AT parameters must be designated by the user as summarized in the table below.

Operation Mode (S1+3)	AT sampling period $\mathbf{(S 1 + 1 9)}$	AT control period $\mathbf{(S 1 + 2 0)}$	AT set point $(\mathbf{S 1 + 2 1)}$	AT output manipulated variable (S1+22)
0: PID action	-	-	-	-
1: AT (auto tuning) + PID action	By user	By user	By user	By user (0 to 100)
2: AT (auto tuning)	Automatic	Automatic	Automatic	Automatic
3: Advanced AT + PID action	Automatic	Automatic	By user	Automatic
4: Advanced AT				

Step Response Method

The MicroSmart uses the step response method to execute auto tuning and determine PID parameters such as proportional term ($\mathrm{S} 1+7$), integral time $(\mathrm{S} 1+8)$, derivative time $(\mathrm{S} 1+9)$, and control action (S2+0) automatically. The auto tuning is executed in the following steps:

1. Calculate the maximum slope of the process variable $(\mathrm{S} 1+\mathrm{O})$ before the process variable reaches the AT set point (S1+21).
2. Calculate the dead time based on the derived maximum slope.
3. Based on the maximum slope and dead time, calculate the four AT Set Point $(\mathrm{S} 1+21)$ Maximum Slope PID parameters.

S1+19 AT Sampling Period

The AT sampling period determines the interval of sampling during auto tuning. When using auto tuning with operation mode (S1+3) set to 1 (AT+PID) or 2 (AT), set a required value of 1 through 10000 to specify an AT sampling period of 0.01 sec through 100.00 sec to the data register designated by $\mathrm{S} 1+19$. When $\mathrm{S} 1+19$ stores 0 , the AT sampling period is set to 0.01 sec . When $\mathrm{S} 1+19$ stores a value larger than 10000 , the AT sampling period is set to 100.00 sec .

Set the AT sampling period to a long value to make sure that the current process variable is smaller than or equal to the previous process variable during direct control action ($\mathrm{S} 2+0$ is on) or that the current process variable is larger than or equal to the previous process variable during reverse control action (S2+0 is off).
When using advanced auto turing with operation mode (S1+3) set to 3 (advanced AT+PID) or 4 (advanced AT), the AT sampling period is determined automatically and does not have to be set by the user.

S1+20 AT Control Period

The AT control period determines the duration of the ON/OFF cycle of the control output (S2+6) during auto tuning. For operation of the control output, see "Control Period" on page 14-10.

When using auto tuning with operation mode (S1+3) set to 1 (AT+PID) or 2 (AT), set a required value of 1 through 500 to specify an AT control period of 0.1 sec through 50.0 sec to the data register designated by $\mathrm{S} 1+20$. When $\mathrm{S} 1+20$ stores 0 , the AT control period is set to 0.1 sec . When $\mathrm{S} 1+20$ stores a value larger than 500 , the AT control period is set to 50.0 sec .
When using advanced auto turing with operation mode (S1+3) set to 3 (advanced AT+PID) or 4 (advanced AT), the AT control period is determined automatically and does not have to be set by the user.

S1+21 AT Set Point

While auto tuning is executed, the AT output manipulated variable ($\mathrm{S} 1+22$) is outputted to the output manipulated variable $(S 1+1)$ until the process variable $(S 1+0)$ reaches the $A T$ set point $(S 1+21)$. When the process variable $(S 1+0)$ reaches the AT set point ($\mathrm{S} 1+21$), auto tuning is complete and the output manipulated variable $(\mathrm{S} 1+1)$ is reduced to zero. When PID action is selected with operation mode (S1+3) set to 1 (AT+PID) or 3 (advanced AT+PID), the PID action follows immediately.

When the operation mode (S1+3) is set to 1 (AT+PID), 2 (AT), or 4 (advanced AT), set a required AT set point to the data register designated by $\mathrm{S} 1+21$. When the operation mode $(S 1+3)$ is set to 3 (advanced AT+PID), the AT set point is determined automatically and does not have to be set by the user.

When the linear conversion is disabled ($\mathrm{S} 1+4$ set to 0 or 2), set a required AT set point of 0 through 4095 or 50000 depending on the analog I/O module type to the data register designated by S1+21. When S1+21 stores a value larger than 4095 or 50000, the AT set point is set to 4095 or 50000.

When the linear conversion is enabled ($\mathrm{S} 1+4$ set to 1 or 3), set a required AT set point of 0 through 65535 (word data type) or -32768 through 32767 (integer data type) to the data register designated by S1+21. The AT set point must be larger than or equal to the linear conversion minimum value $(\mathrm{S} 1+6)$ and must be smaller than or equal to the linear conversion maximum value $(S 1+5)$.
In the direct control action (see page 14-15), set the AT set point ($\mathrm{S} 1+21$) to a value sufficiently smaller than the process variable (S 4) at the start of the auto tuning. In the reverse control action, set the AT set point ($\mathrm{S} 1+21$) to a value sufficiently larger than the process variable (S 4) at the start of the auto tuning, otherwise the process variable ($\mathrm{S} 1+0$) cannot reach the AT set point ($\mathrm{S} 1+21$) and AT parameters cannot be determined.

S1+22 AT Output Manipulated Variable

The AT output manipulated variable specifies the amount of the output manipulated variable (0 through 100) during auto tuning. When using auto tuning, set a required AT output manipulated variable of 0 through 100 to the data register designated by S1+22. When S1+22 stores a value larger than 100, the AT output manipulated variable is set to 100 .
While auto tuning is executed, the specified value of the AT output manipulated variable ($\mathrm{S} 1+22$) is outputted to the output manipulated variable ($\mathrm{S} 1+1$), and the control output ($\mathrm{S} 2+6$) is turned on and off according to the AT control period ($\mathrm{S} 1+20$) and the AT output manipulated variable ($\mathrm{S} 1+22$). To keep the control output ($\mathrm{S} 2+6$) on during auto tuning, set 100 to S1+22.
When using advanced auto turing with operation mode (S1+3) set to 3 (advanced AT+PID) or 4 (advanced AT), the AT output manipulated variable is determined automatically and does not have to be set by the user.

S1+23 Output Manipulated Variable \%

While the PID action is in progress, the data register designated by $\mathrm{S} 1+23$ holds the manipulated variable, -32768 through 32767 (-327.68% through 327.67%), indicating the value to the second decimal place.
While manual mode is enabled with the auto/manual mode control relay ($\mathrm{S} 2+1$) set to on, $\mathrm{S} 1+23$ holds an indefinite value.

While auto tuning or advanced auto tuning is in progress, $\mathrm{S} 1+23$ holds an indefinite value.

S1+24 Output Manipulated Variable for Analog Output Module

While the PID action is in progress, the data register designated by $\mathrm{S} 1+24$ holds a value of 0 through 4095 or 50000 , depending on the analog I/O module type. The value is converted from the value of 0 through 100 stored in S1+1 to represent the output manipulated variable of 0\% through 100\%.
While manual mode is enabled with the auto/manual mode control relay ($\mathrm{S} 2+1$) set to on, $\mathrm{S} 1+24$ holds a value of 0 through 4095 or 50000 converted from the manual mode output manipulated variable (S1+18).
While auto tuning or advanced auto tuning is in progress, $\mathrm{S} 1+24$ holds a value of 0 through 4095 or 50000 read from the AT output manipulated variable ($\mathrm{S} 1+22$).

S1+25 Proportional Band Offset Value

When the proportional band is selected ($\mathrm{S} 1+4$ set to 2 or 3), the output manipulated variable ($\mathrm{S} 1+1$) of 0% through 100% can be shifted by an offset of -100% through 100%. Set a required offset value of -100 through 100 to the data register designated by $\mathrm{S} 1+25$ before executing auto tuning.

When the proportional gain is selected ($\mathrm{S} 1+4$ set to 0 or 1), the proportional band offset value ($\mathrm{S} 1+25$) has no effect.

S1+26 Derivative Gain

The derivative gain can be selected from 0% through 100%. When the derivative gain is set to a small value, the output manipulated variable ($\mathrm{S} 1+1$) is susceptible to an external noise or a change in the set point. When the derivative gain is set to a large value, the output manipulated variable (S1+1) becomes less susceptible to an external noise or a change in the set point, but stability is adversely affected during normal operation. Set a required derivative gain of 0 through 100 to the data register designated by S1+26 before executing auto tuning.
Recommended values are 20% through 30% when the process variable fluctuates or is subject to noise.

Source Device S2 (Control Relay)

Turn on or off appropriate outputs or internal relays starting with the device designated by S 2 before executing the PID instruction as required. Devices S2+4 through S2+7 are for read only to reflect the PID and auto tuning statuses.

Device	Function	Description	R/W
S2+0	Control action	ON: Direct control action OFF: Reverse control action	R/W
S2+1	Auto/manual mode	ON: Manual mode OFF: Auto mode	R/W
S2+2	Output manipulated variable limit enable	ON: Enable output manipulated variable upper and lower limits ($\mathrm{S} 1+16$ and $\mathrm{S} 1+17$) OFF: Disable output manipulated variable upper and lower limits (S1+16 and S1+17)	R/W
S2+3	Integral start coefficient disable	ON: Disable integral start coefficient (S1+10) OFF: Enable integral start coefficient (S1+10)	R/W
S2+4	High alarm output	ON: When process variable $(S 1+0) \geq$ high alarm value $(S 1+14)$ OFF: When process variable $(\mathrm{S} 1+0)<$ high alarm value $(\mathrm{S} 1+14)$	R
S2+5	Low alarm output	$\mathrm{ON}: \quad$ When process variable $(\mathrm{S} 1+0) \leq$ low alarm value $(\mathrm{S} 1+15)$ OFF: When process variable $(\mathrm{S} 1+0)>$ low alarm value $(\mathrm{S} 1+15)$	R
S2+6	Control output	Goes on and off according to the AT parameters or PID calculation results	R
S2+7	AT complete output	Goes on when AT is complete or failed, and remains on until reset	R

S2+0 Control Action

When auto tuning is executed with the operation mode (S1+3) set to 1 (AT+PID), 2 (AT), 3 (advanced AT+PID), or 4 (advanced AT), the control action is determined automatically. When auto tuning results in a direct control action, the control action control relay designated by S2+0 is turned on. When auto tuning results in a reverse control action, the control action control relay designated by S2 +0 is turned off. The PID action is executed according to the derived control action, which remains in effect during the PID action.

When auto tuning is not executed with the operation mode (S1+3) set to 0 (PID), turn on or off the control action control relay (S2+0) to select a direct or reverse control action, respectively, before executing the PID instruction.

In the direct control action, the manipulated variable (D1) is increased while the process variable ($\mathrm{S} 1+0$) is larger than the set point (S3). Temperature control for cooling is executed in the direct control action.

In the reverse control action, the manipulated variable (D1) is increased while the process variable ($\mathrm{S} 1+0$) is smaller than the set point (S3). Temperature control for heating is executed in the reverse control action.

In either the direct or reverse control action, the manipulated variable (D1) is increased while the difference between the process variable (S1+0) and the set point (S3) increases.

S2+1 Auto/Manual Mode

To select auto mode, turn off the auto/manual mode control relay designated by S2+1 before or after starting the PID instruction. In auto mode, the PID action is executed and the manipulated variable (D1) stores the PID calculation result. The control output ($\mathrm{S} 2+6$) is turned on and off according to the control period $(\mathrm{S} 1+13)$ and the output manipulated variable ($\mathrm{S} 1+1$).
To select manual mode, turn on the auto/manual mode control relay $(S 2+1)$. When using manual mode, set a required value to the manual mode output manipulated variable $(S 1+18)$ before enabling manual mode. In manual mode, the output manipulated variable ($\mathrm{S} 1+1$) stores the manual mode output manipulated variable ($\mathrm{S} 1+18$), and the output manipulated variable for analog output module ($(1+24$) stores a value of 0 through 4095 or 50000 converted from the manual mode output manipulated variable ($\mathrm{S} 1+18$). The control output ($\mathrm{S} 2+6$) is turned on and off according to the control period ($\mathrm{S} 1+13$) and the manual mode output manipulated variable ($\mathrm{S} 1+18$).

The $\mathrm{S} 1+18$ value has no effect on the manipulated value (D1) and the output manipulated variable \% (S1+23).
While auto tuning is in progress, manual mode cannot be enabled. Only after auto tuning is complete, auto or manual mode can be enabled. Auto/manual mode can also be switched while executing the PID instruction.

S2+2 Output Manipulated Variable Limit Enable

The output manipulated variable upper limit (S1+16) and the output manipulated variable lower limit (S1+17) are enabled or disabled using the output manipulated variable limit enable control relay (S2+2).
To enable the output manipulated variable upper/lower limits, turn on S2+2.
To disable the output manipulated variable upper/lower limits, turn off $\mathrm{S} 2+2$.

S2+3 Integral Start Coefficient Disable

The integral start coefficient ($\mathrm{S} 1+10$) is enabled or disabled using the integral start coefficient disable control relay ($\mathrm{S} 2+3$).
To enable the integral start coefficient ($\mathrm{S} 1+10$), turn off $\mathrm{S} 2+3$; the integral term is enabled as specified by the integral start coefficient (S1+10).
To disable the integral start coefficient ($\mathrm{S} 1+10$), turn on $\mathrm{S} 2+3$; the integral term is enabled at the start of the PID action.

S2+4 High Alarm Output

When the process variable $(S 1+0)$ is higher than or equal to the high alarm value ($\mathrm{S} 1+14$), the high alarm output control relay $(S 2+4)$ goes on. When $S 1+0$ is lower than $S 1+14, S 2+4$ is off.

S2+5 Low Alarm Output

When the process variable ($\mathrm{S} 1+0$) is lower than or equal to the low alarm value ($\mathrm{S} 1+15$), the low alarm output control relay $(\mathrm{S} 2+5)$ goes on. When $\mathrm{S} 1+0$ is higher than $\mathrm{S} 1+15, \mathrm{~S} 2+5$ is off.

S2+6 Control Output

During auto tuning in auto mode with the auto/manual mode control relay ($\mathrm{S} 2+1$) set to off, the control output ($\mathrm{S} 2+6$) is turned on and off according to the AT control period ($\mathrm{S} 1+20$) and AT output manipulated variable ($\mathrm{S} 1+22$).

During PID action in auto mode with the auto/manual mode control relay ($\mathrm{S} 2+1$) set to off, the control output ($\mathrm{S} 2+6$) is turned on and off according to the control period $(S 1+13)$ and the output manipulated variable $(S 1+1)$ calculated by the PID action.

While advanced auto tuning is in progress, the control output ($\mathrm{S} 2+6$) remains on.
In manual mode with the auto/manual mode control relay ($\mathrm{S} 2+1$) set to on, the control output ($\mathrm{S} 2+6$) is turned on and off according to the control period $(S 1+13)$ and the manual mode output manipulated variable ($\mathrm{S} 1+18$).

S2+7 AT Complete Output

The AT complete output control relay ($\mathrm{S} 2+7$) goes on when auto tuning is complete or failed, and remains on until reset. Operating status codes are stored to the operating status control register (S1+2). See page 14-4.

Source Device S3 (Set Point)

The PID action is executed to adjust the process variable (S1+0) to the set point (S3).
When the linear conversion is disabled ($\mathrm{S} 1+4$ set to 0 or 2), set a required set point value of 0 through 4095 or 50000, depending on the analog I/O module type, to the device designated by S3. Valid devices are data register and constant.

When the linear conversion is enabled ($\mathrm{S} 1+4$ set to 1 or 3), designate a data register as device S 3 and set a required set point value of 0 through 65535 (word data type) or -32768 through 32767 (integer data type) to the data register designated by S 3 . The set point value (S 3) must be larger than or equal to the linear conversion minimum value ($\mathrm{S} 1+6$) and smaller than or equal to the linear conversion maximum value ($\mathrm{S} 1+5$).

When an invalid value is designated as a set point, the PID action is stopped and an error code is stored to the data register designated by S1+2. See "Operating Status" on page 14-4.

Source Device S4 (Process Variable before Conversion)

The PID instruction is designed to use analog input data from an analog I/O module as process variable. The analog I/O module converts the input signal to a digital value of 0 through 4095 or 50000 , and stores the digital value to a data register depending on the mounting position of the analog I/O module and the analog input channel connected to the ana\log input source. Designate a data register as source device $S 4$ to store the process variable.

For the data register number to designate as source device S4, see page 9-3 (Basic Vol.). Specify the data register number shown under Data in the Configure Parameters dialog box as source device S4 (process variable) of the PID instruction. The analog input data in the selected data register is used as the process variable of the PID instruction.

Destination Device D1 (Manipulated Variable)

The data register designated by destination device D1 stores the manipulated variable of -32768 through 32767 calculated by the PID action. When the calculation result is less than -32768 , D1 stores -32768 . When the calculation result is greater than 32767, D1 stores 32767. While the calculation result is less than -32768 or greater than 32767, the PID action still continues.

When the output manipulated variable limit is disabled (S2+2 set to off) while the PID action is in progress, the data register designated by $\mathrm{S} 1+1$ holds 0 through 100 of the manipulated variable (D1), omitting values less than 0 and greater than 100. The percent value in $\mathrm{S} 1+1$ determines the ON duration of the control output ($\mathrm{S} 2+6$) in proportion to the control period ($\mathrm{S} 1+13$).
When the output manipulated variable limit is enabled (S2+2 set to on), the manipulated variable (D1) is stored to the output manipulated variable ($\mathrm{S} 1+1$) according to the output manipulated variable upper limit ($\mathrm{S} 1+16$) and the output manipulated variable lower limit ($\mathrm{S} 1+17$) as summarized in the table below.

While manual mode is enabled with the auto/manual mode control relay ($\mathrm{S} 2+1$) set to on, $\mathrm{S} 1+1$ stores 0 through 100 of the manual mode output manipulated variable ($\mathrm{S} 1+18$), and D1 stores an indefinite value irrespective of the $S 1+18$ value.

While auto tuning is in progress, $\mathrm{S} 1+1$ stores 0 through 100 of the AT output manipulated variable (S1+22), and D1 stores an indefinite value.
While advanced auto tuning is in progress, S1+1 and D1 store an indefinite value.

Examples of Output Manipulated Variable Values

Output Manipulated Variable Limit Enable (S2+2)	Output Manipulated Variable Upper Limit (S1+16)	Output Manipulated Variable Lower Limit (S1+17)	Manipulated Variable (D1)	Output Manipulated Variable (S1+1)
OFF (disabled)	-	-	≥ 100	100
			1 to 99	1 to 99
			≤ 0	0
ON (enabled)	50	25	≥ 50	50
			26 to 49	26 to 49
			≤ 25	25
	10050	-	≥ 100	50
			1 to 99	$(1$ to 99$) \times 0.5$
			≤ 0	0

IMPORTANT

The control output ($\mathrm{S} 2+6$) is turned on and off according to the control period ($\mathrm{S} 1+13$) and the output manipulated variable ($\mathrm{S} 1+1$). When an feedback system consists of the control output ($\mathrm{S} 2+6$), optimum control may not be achieved for some controlled object, then it is recommended that a feedback control system be programmed using the calculation results of the manipulated variable (D1).

Notes for Using the PID Instruction:

- Since the PID instruction requires continuous operation, keep on the start input for the PID instruction.
- The high alarm output $(\mathrm{S} 2+4)$ and the low alarm output $(\mathrm{S} 2+5)$ work while the start input for the PID instruction is on. These alarm outputs, however, do not work when a PID instruction execution error occurs (S1+2 stores 100 or more) due to data error in control data registers S1+0 through S1+26 or while the start input for the PID instruction is off. Provide a program to monitor the process variable (S4) separately.
- When a PID execution error occurs (S1+2 stores 100 or more) or when auto tuning is completed, the manipulated variable (D1) stores 0 and the control output (S2+6) turns off.
- Do not use the PID instruction in program branching instructions: LABEL, LJMP, LCAL, LRET, JMP, JEND, MCS, and MCR. The PID instruction may not operate correctly in these instructions.
- The PID instruction, using the difference between the set point (S3) and process variable (S4) as input, calculates the manipulated variable (D1) according to the PID parameters, such as proportional term (S1+7), integral time ($\mathrm{S} 1+8$), and derivative time ($\mathrm{S} 1+9$). When the set point (S3) or process variable (S4) is changed due to disturbance, overshoot or undershoot will be caused. Before putting the PID control into actual application, perform simulation tests by changing the set point and process variable (disturbance) to anticipated values in the application.
- The PID parameters, such as proportional term (S1+7), integral time (S1+8), and derivative time (S1+9), determined by the auto tuning may not always be the optimum values depending on the actual application. To make sure of the best results, adjust the parameters. Once the best PID parameters are determined, perform only the PID action in usual operation unless the control object is changed.

Application Examples

The following two application examples demonstrate an advanced auto tuning and PID action to keep a heater temperature at $200^{\circ} \mathrm{C}$.

In both examples, when the program is started, the PID instruction first executes advanced auto tuning to determine the AT parameters, such as AT sampling period, AT control period, AT set point, and AT output manipulated variable, using the temperature data inputted to the analog input module, then executes auto tuning to determine PID parameters such as proportional term, integral time, derivative time, sampling period, control period, and control action. When auto tuning is complete, PID action starts to control the temperature to $200^{\circ} \mathrm{C}$ using the derived PID parameters.

Example 1: ON/OFF Control Using Relay Output

The heater is turned on and off according to the output manipulated variable calculated by the PID action. When the heater temperature is higher than or equal to $250^{\circ} \mathrm{C}$, an alarm light is turned on by the high alarm output.
The analog input operating status is also monitored to force off the heater power switch and force on the high alarm light.

System Setup

Temperature Control by Auto Tuning and PID Action

Device Settings

Device	Function	Description	Device Address (Value)
S1+3	Operation mode	Advanced AT (auto tuning) + PID action	D3 (3)
S1+4	Control mode	Enable linear conversion, proportional band	D4 (3)
S1+5	Linear conversion maximum value	$1300^{\circ} \mathrm{C}$	D5 (13000)
S1+6	Linear conversion minimum value	$0^{\circ} \mathrm{C}$	D6 (0)
S1+10	Integral start coefficient	100\%	D10 (100)
S1+11	Input filter coefficient	70\%	D11 (70)
S1+14	High alarm value	$250^{\circ} \mathrm{C}$	D14 (2500)
S1+15	Low alarm value	$0^{\circ} \mathrm{C}$	D15 (0)
S1+25	Proportional band offset value	0\%	D25 (0)
S1+26	Derivative gain	0\%	D26 (0)
S2+2	Output manipulated variable limit enable	Disable output manipulated variable limits	M2 (OFF)
S2+3	Integral start coefficient disable	Enable integral start coefficient (S1+10)	M3 (OFF)
S2+4	High alarm output	ON: When temperature $\geq 250^{\circ} \mathrm{C}$ OFF: When temperature $<250^{\circ} \mathrm{C}$	M4
S2+6	Control output	Remains on during advanced auto tuning; Goes on and off according to the control period ($\mathrm{S} 1+13$) and output manipulated variable ($\mathrm{S} 1+1$) during PID action	M6
S3	Set point	$200^{\circ} \mathrm{C}$	D100 (2000)
S4	Process variable	Analog input data of analog I/O module 1, analog input channel 0; stores 0 through 4095	D760
	Analog input operating status	Stores 0 through 5	D761
	Analog input signal type	Type K thermometer	D762 (2)
	Analog input data type	12-bit data (0 to 4095) (Note)	D763 (0)
D1	Manipulated variable	Stores PID calculation result	D50
	PID start input	Starts to execute the PID instruction	10
	Heater power switch	Turned on and off by control output M6	Q0
	High alarm light	Turned on and off by high alarm output M4 and analog input error M11	Q1
	Analog input error	Turns on when analog input operating status D761 is 3 or more	M11

Note: When analog I/O module FC4A-LO3AP1 is used for the PID instruction, select the binary data to make sure that the process variable takes a value of 0 through 4095.

Analog Input Data vs. Process Variable after Conversion

Ladder Program

The ladder diagram shown below describes an example of using the PID instruction. The user program must be modified according to the application and simulation must be performed before actual operation.

M8120 is the initialize pulse special internal relay.
When the CPU starts, the ANST (analog macro) instruction stores parameters for the analog I/O module function.
The PIDST (PID macro) instruction also stores parameters for the PID function.

D760 is the analog input data of analog I/O module 1, analog input channel 0; stores 0 through 4095

When internal relay M4 (high alarm output) is turned on or M11 is turned on (analog input operating status is 3 or more), Q0 (heater output) is turned off and output Q1 (high alarm light) is turned on.

When M4 and M11 are off and M6 (control output) is turned on, Q0 (heater output) is turned on and output Q1 (high alarm light) is turned off.

When D761 (analog input operating status) stores 3 or more, internal relay M11 is turned on.

Set Analog Module Parameters (ANST) Dialog Box

WindLDR has a macro to program parameters for analog I/O modules. Place the cursor where to insert the ANST instruction, click the right mouse button, and select Macro Instructions > ANST (Set Analog Module Parameters). In the ANST dialog box, press the Configure button under Slot 1, and program as shown below.

Set PID Parameters (PIDST) Dialog Box

Place the cursor where to insert the PIDST instruction, click the right mouse button, and select Macro Instructions > PIDST (Set PID Parameters). In the PIDST dialog box, program as shown below.

S1+3	Operation mode	$\mathrm{S} 1+14$	High alarm value
S1+4	Control mode	$\mathrm{S} 1+15$	Low alarm value
S1+5	Linear conversion maximum value	$\mathrm{S} 1+25$	Proportional band offset value
S1+6	Linear conversion minimum value	$\mathrm{S} 1+26$	Derivative gain
S1+10	Integral start coefficient	$\mathrm{S} 2+2$	Output manipulated variable limit enable
S1+11	Input filter coefficient	$\mathrm{S} 2+3$	Integral start coefficient disable
		S 3	Set point

PID Control (PID) Dialog Box

Example 2: ON/OFF Control Using Analog Output

The output manipulated variable for analog output module (S1+24) of the PID instruction is moved to the analog output data (D772) and the analog I/O module sends out a voltage output of 0 to 10 V DC. The analog output is then connected to a thyristor unit which controls the AC power using phase control.

System Setup

Temperature Control by Auto Tuning and PID Action

Device Settings for Analog I/O Module

Analog Channel	Function	Description	Device Address (Value)
Input Channel 0	Analog input data	Analog input data of analog 1/O module 1, analog input channel 0; stores 0 through 4095	D760
	Analog input operating status	Stores 0 through 5	D761
	Analog input signal type	Type K thermometer	D762 (2)
	Analog input data type	12 -bit data (0 to 4095)	D763 (0)
Output	Analog output data	O to 4095	D772
	Analog output operating status	Stores 0 through 4	D773
	Analog output signal type	Voltage output (0 to 10V DC)	D774 (0)
	Analog output data type	12-bit data (0 to 4095)	D775 (0)

Ladder Program

The ladder diagram shown below describes an example of using the PID instruction. The user program must be modified according to the application and simulation must be performed before actual operation.
Programming in the dialog boxes of the ANST (Set Analog Module Parameters), PIDST (Set PID Parameters), and PID (PID Control) instructions are the same as the preceding example.

M8120 is the initialize pulse special internal relay.
When the CPU starts, the ANST (analog macro) instruction stores parameters for the analog I/O module function.
The PIDST (PID macro) instruction also stores parameters for the PID function.
D760 is the analog input data of analog I/O module 1, analog input channel 0 ; stores 0 through 4095
When internal relay M 4 (high alarm output) is turned on or M11 is turned on (analog input operating status is 3 or more), 0 is set to D772 (analog output data), turning off the heater power.

When M4 and M11 are off, D24 (output manipulated variable for analog output module S1+24) of the PID instruction is moved to D772 (analog output data).
When D761 (analog input operating status) stores 3 or more, internal relay M11 is turned on.

Notes for Using Ladder Refresh Type Analog Input Modules:

- When using analog input module FC4A-J4CN1 with Pt100 or Ni100 inputs, use the XYFS and CVXTY instructions to convert the 06,000 input to 0-50,000 input and store the result to the process variable (S4) of the PID instruction.
- When using analog input module FC4A-J4CN1 with Pt1000 or Ni1000 inputs, use the XYFS and CVXTY instructions to convert the 060,000 input to 0-50,000 input and store the result to the process variable (S4) of the PID instruction.
- When using analog input module FC4A-J8AT1, keep the operation within the temperature range where the thermistor shows linear characteristics.
- When using analog input module FC4A-J8AT1, use the XYFS and CVXTY instructions to convert the 0-4,000 input to 0-50,000 input and store the result to the process variable (S4) of the PID instruction.
- When using analog output module FC4A-K2C1 with voltage outputs, use the XYFS and CVXTY instructions to convert the output manipulated variable for analog output module $(S 1+24)$ and store the result to the data register designated as analog output data of the analog output module.
- The following example demonstrates a program for analog input module FC4A-J4CN1 to convert Pt1000 or Ni1000 analog input data in D410 to a value within the range between 0 and 50,000, and store the result to D510.

M8120 is the initialize pulse special internal relay. At startup, XYFS specifies two points.
When input 10 is on, CVXTY converts the value in D410 and stores the result to D510.

15: Dual / Teaching Timer Instructions

Introduction

Dual timer instructions generate ON/OFF pulses of required durations from a designated output, internal relay, or shift register bit. Four dual timers are available and the ON/OFF duration can be selected from 1 ms up to 65535 sec .

Teaching timer instruction measures the ON duration of the start input for the teaching timer instruction and stores the measured data to a designated data register, which can be used as a preset value for a timer instruction.

DTML (1-sec Dual Timer)

While input is on, destination device D1 repeats to turn on and off for a duration designated by devices S 1 and S 2 , respectively.

The time range is 0 through 65535 sec.

DTIM (100-ms Dual Timer)

While input is on, destination device D1 repeats to turn on and off for a duration designated by devices S1 and S2, respectively.
The time range is 0 through 6553.5 sec .

DTMH (10-ms Dual Timer)

While input is on, destination device D1 repeats to turn on and off for a duration designated by devices S1 and S2, respectively.

The time range is 0 through 655.35 sec .

DTMS (1-ms Dual Timer)

While input is on, destination device D1 repeats to turn on and off for a duration designated by devices S1 and S2, respectively.
The time range is 0 through 65.535 sec .

Applicable CPU Modules

FC5A-C10R2/C/D	FC5A-C16R2/C/D	FC5A-C24R2/C/D	FC5A-D16RK1/RS1	FC5A-D32K3/S3	FC5A-D12K1E/S1E
X	X	X	X	X	X

Valid Devices

Device	Function	I	\mathbf{Q}	\mathbf{M}	\mathbf{R}	T	C	D	Constant
S1 (Source 1)	ON duration	-	-	-	-	-	-	X	$0-65535$
S2 (Source 2)	OFF duration	-	-	-	-	-	-	X	$0-65535$
D1 (Destination 1)	Dual timer output	-	X	\mathbf{A}	X	-	-	-	-
D2 (Destination 2)	System work area	-	-	-	-	-	-	X	-

For the valid device address range, see pages 6-1 and 6-2 (Basic Vol.).
A Internal relays M0 through M2557 can be designated as D1. Special internal relays cannot be designated as D1.
Destination device D2 (system work area) uses 2 data registers starting with the device designated as D2. Data registers D0-D1998, D2000-D7998, and D10000-D49998 can be designated as D2. The two data registers are used for a system work area. Do not use these data registers for destinations of other advanced instructions, and do not change values of these data registers using the Point Write function on WindLDR. If the data in these data registers are changed, the dual timer does not operate correctly.

The dual timer instructions cannot be used in an interrupt program. If used, a user program execution error will result, turning on special internal relay M8004 and the ERR LED on the CPU module.

Examples: DTML, DTIM, DTMH, DTMS

While input 10 is on, four dual timer instructions turn on and off the destination devices according to the on and off durations designated by source devices S1 and S2.

Instruction	Increments	S1	ON duration	S2	OFF duration
DTML	1 sec	2	$1 \mathrm{sec} \times 2=2 \mathrm{sec}$	1	$1 \mathrm{sec} \times 1=1 \mathrm{sec}$
DTIM	100 ms	10	$100 \mathrm{~ms} \times 10=1 \mathrm{sec}$	5	$100 \mathrm{~ms} \times 5=0.5 \mathrm{sec}$
DTMH	10 ms	50	$10 \mathrm{~ms} \times 50=500 \mathrm{~ms}$	25	$10 \mathrm{~ms} \times 25=250 \mathrm{~ms}$
DTMS	1 ms	250	$1 \mathrm{~ms} \times 250=250 \mathrm{~ms}$	125	$1 \mathrm{~ms} \times 125=125 \mathrm{~ms}$

For the timer accuracy of timer instructions, see page 7-9 (Basic Vol.).

TTIM (Teaching Timer)

While input is on, the ON duration is measured in units of 100 ms and the measured value is stored to a data register designated by destination device D1.

The measured time range is 0 through 6553.5 sec .

Applicable CPU Modules

FC5A-C10R2/C/D	FC5A-C16R2/C/D	FC5A-C24R2/C/D	FC5A-D16RK1/RS1	FC5A-D32K3/S3	FC5A-D12K1E/S1E
X	X	X	X	X	X

Valid Devices

Device	Function	I	\mathbf{Q}	\mathbf{M}	\mathbf{R}	\mathbf{T}	\mathbf{C}	\mathbf{D}
Constant								
(Destination 1)	Measured value	-	-	-	-	-	-	X

For the valid device address range, see pages 6-1 and 6-2 (Basic Vol.).
Destination device D1 (measured value) uses 3 data registers starting with the device designated as D1. Data registers D0-D1997, D2000-D7997, and D10000-D49997 can be designated as D1. Subsequent two data registers starting with destination device D1+1 are used for a system work area. Do not use these two data registers for destinations of other advanced instructions, and do not change values of these data registers using the Point Write function on WindLDR. If the data in these data registers are changed, the teaching timer does not operate correctly.

The teaching timer instruction cannot be used in an interrupt program. If used, a user program execution error will result, turning on special internal relay M8004 and the ERR LED on the CPU module.

Examples: TTIM

When input 10 is turned on, TTIM resets data register D100 to zero and starts to store the ON duration of input 10 to data register D100, measured in units of 100 ms .
When input IO is turned off, TTIM stops the measurement, and data register D100 maintains the measured value of the ON duration.

The following example demonstrates a program to measure the ON duration of input IO and to use the ON duration as a preset value for 100-ms timer instruction TIM.

When input 11 is turned on, 100-ms timer T0 starts to operate with a preset value stored in data register DO.

While input 10 is on, TTIM measures the ON duration of input 10 and stores the measured value in units of 100 ms to data register D100.

When input 10 is turned off, MOV(W) stores the D100 value to data register DO as a preset value for timer TO.

16: Intelligent Module Access Instructions

Introduction

Intelligent module access instructions are used to read or write data between the CPU module and a maximum of seven intelligent modules while the CPU module is running or when the CPU module is stopped.

Intelligent Module Access Overview

The Run Access Read instruction reads data from the designated address in the intelligent module and stores the read data to the designated device while the CPU module is running. The Run Access Write instruction writes data from the designated device to the designated address in the intelligent module while the CPU module is running.
The Stop Access Read instruction reads data from the designated address in the intelligent module and stores the read data to the designated device when the CPU module is stopped. The Stop Access Write instruction writes data from the designated device to the designated address in the intelligent module when the CPU module is stopped.

Data movement while the CPU module is running

Data movement when the CPU module is stopped

While the CPU module is running and the input is on, RUNA READ is executed to read data from the intelligent module, and RUNA WRITE to write data to the intelligent module.

When the CPU module is stopped, STPA READ is executed to read data from the intelligent module, and STPA WRITE to write data to the intelligent module.

RUNA READ (Run Access Read)

While input is on, data is read from the area starting at ADDRESS in the intelligent module designated by SLOT and stored to the device designated by DATA.
BYTE designates the quantity of data to read.
STATUS stores the operating status code.

Applicable CPU Modules

FC5A-C10R2/C/D	FC5A-C16R2/C/D FC5A-C24R2D	FC5A-C24R2/C	FC5A-D16RK1/RS1	FC5A-D32K3/S3	FC5A-D12K1E/S1E
-	-	X	X	X	X

Valid Devices (Run Access Read)

Device	Function	\mathbf{I}	\mathbf{Q}	\mathbf{M}	\mathbf{R}	\mathbf{T}	\mathbf{C}	\mathbf{D}	Constant	Repeat
DATA	First device address to store read data	-	X	$\mathbf{1}$	X	X	X	X	-	
STATUS	Operating status code	-	-	-	-	-	-	X	-	
SLOT	Intelligent module slot number	-	-	-	-	-	-	-	$1-7$	
ADDRESS	First address in intelligent module to read data from	-	-	-	-	-	-	-	$0-127$	-
BYTE	Bytes of data to read	-	-	-	-	-	-	-	$1-127$	-

For the valid device address range, see pages 6-1 and 6-2 (Basic Vol.).
DATA: \quad Specify the first device address to store the data read from the intelligent module.
4 Internal relays M0 through M2557 can be designated as DATA. Special internal relays cannot be designated as DATA.
When T (timer) or C (counter) is used as DATA for Run Access Read, the data read from the intelligent module is stored as a preset value (TP or CP) which can be 0 through 65535.
All data registers, including special data registers and expansion data registers, can be designated as DATA.
STATUS: Specify a data register to store the operating status code. Data registers D0-D1999 and D10000-D49999 can be designated as STATUS. Special data registers and expansion data registers cannot be designated. For status code description, see page 16-6.
SLOT: Enter the slot number where the intelligent module is mounted. A maximum of seven intelligent modules can be used. ADDRESS: Specify the first address in the intelligent module to read data from.
BYTE: Specify the quantity of data to read in bytes.
The RUNA READ instruction cannot be used in an interrupt program. If used, a user program execution error will result, turning on special internal relay M8004 and the ERR LED on the CPU module.

Valid Data Types

W (word)	X
\mathbf{I} (integer)	X
\mathbf{D} (double word)	-
\mathbf{L} (long)	-
F (float)	-

When a bit device such as I (input), Q (output), M (internal relay), or R (shift register) is designated as DATA, 16 points are used.
When a word device such as T (timer), C (counter), or D (data register) is designated as DATA, 1 point is used.

RUNA WRITE (Run Access Write)

While input is on, data in the area starting at the device designated by DATA is written to ADDRESS in the intelligent module designated by SLOT.
BYTE designates the quantity of data to write.
STATUS stores the operating status code.

Applicable CPU Modules

| FC5A-C10R2/C/D | FC5A-C16R2/C/D
 FC5A-C24R2D | FC5A-C24R2/C | FC5A-D16RK1/RS1 | FC5A-D32K3/S3 | FC5A-D12K1E/S1E |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - | - | X | X | X | X |

Valid Devices (Run Access Write)

Device	Function	I	\mathbf{Q}	\mathbf{M}	\mathbf{R}	\mathbf{T}	\mathbf{C}	\mathbf{D}	Constant	Repeat
DATA	First device address to extract data from	X	X	X	X	X	X	X	X	X
STATUS	Operating status code	-	-	-	-	-	-	X	-	
SLOT	Intelligent module slot number	-	-	-	-	-	-	-	$1-7$	
ADDRESS	First address in intelligent module to write data to	-	-	-	-	-	-	-	$0-127$	-
BYTE	Bytes of data to write	-	-	-	-	-	-	-	$1-127$	-

For the valid device address range, see pages 6-1 and 6-2 (Basic Vol.).
DATA: \quad Specify the first device address to extract the data to write to the intelligent module.
When T (timer) or C (counter) is used as DATA for Run Access Write, the timer/counter current value (TC or CC) is written to the intelligent module.
All data registers, including special data registers and expansion data registers, can be designated as DATA.
When a constant is designated as DATA, Repeat cannot be selected. For details about the data movement with or without Repeat, see page 16-7.
STATUS: Specify a data register to store the operating status code. Data registers D0-D1999 and D10000-D49999 can be designated as STATUS. Special data registers and expansion data registers cannot be designated. For status code description, see page 16-6.
SLOT: Enter the slot number where the intelligent module is mounted. A maximum of seven intelligent modules can be used.
ADDRESS: Specify the first address in the intelligent module to store the data.
BYTE: \quad Specify the quantity of data to write in bytes.
The RUNA WRITE instruction cannot be used in an interrupt program. If used, a user program execution error will result, turning on special internal relay M8004 and the ERR LED on the CPU module.

Valid Data Types

W (word)	X
I (integer)	X
\mathbf{D} (double word)	-
\mathbf{L} (long)	-
F (float)	-

When a bit device such as I (input), Q (output), M (internal relay), or R (shift register) is designated as DATA, 16 points are used.

When a word device such as T (timer), C (counter), or D (data register) is designated as DATA, 1 point is used.

STPA READ (Stop Access Read)

Start input is not needed for this instruction.

When the CPU module stops, data is read from the area starting at ADDRESS in the intelligent module designated by SLOT and stored to the device designated by DATA.
BYTE designates the quantity of data to read.
STATUS stores the operating status code.

Note: STPA READ and STPA WRITE instructions can be used 64 times in a user program. When more than 64 STPA READ and STPA WRITE instructions are used in a user program, the excess instructions are not executed and error code 7 is stored in the data register designated as STATUS.

Applicable CPU Modules

| FC5A-C10R2/C/D | FC5A-C16R2/C/D
 FC5A-C24R2D | FC5A-C24R2/C | FC5A-D16RK1/RS1 | FC5A-D32K3/S3 | FC5A-D12K1E/S1E |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - | - | X | X | X | X |

Valid Devices (Stop Access Read)

Device	Function	I	\mathbf{Q}	\mathbf{M}	\mathbf{R}	\mathbf{T}	\mathbf{C}	\mathbf{D}	Constant	Repeat
DATA	First device address to store read data	-	X	\mathbf{A}	X	X	X	X	-	
STATUS	Operating status code	-	-	-	-	-	-	X	-	
SLOT	Intelligent module slot number	-	-	-	-	-	-	-	$1-7$	-
ADDRESS	First address in intelligent module to read data from	-	-	-	-	-	-	-	$0-127$	-
BYTE	Bytes of data to read	-	-	-	-	-	-	-	$1-127$	-

For the valid device address range, see pages 6-1 and 6-2 (Basic Vol.).
DATA: \quad Specify the first device address to store the data read from the intelligent module.
Anternal relays M0 through M2557 can be designated as DATA. Special internal relays cannot be designated as DATA.
When T (timer) or C (counter) is used as DATA for Stop Access Read, the data read from the intelligent module is stored as a preset value (TP or CP) which can be 0 through 65535.

All data registers, including special data registers and expansion data registers, can be designated as DATA.
STATUS: \quad Specify a data register to store the operating status code. Data registers D0-D1999 and D10000-D49999 can be designated as STATUS. Special data registers and expansion data registers cannot be designated. For status code description, see page 16-6.
SLOT: Enter the slot number where the intelligent module is mounted. A maximum of seven intelligent modules can be used.
ADDRESS: Specify the first address in the intelligent module to read data from.
BYTE: \quad Specify the quantity of data to read in bytes.
The STPA READ instruction cannot be used in an interrupt program. If used, a user program execution error will result, turning on special internal relay M8004 and the ERR LED on the CPU module.

If a STPA READ instruction is programmed between MCS and MCR instructions, the STPA READ instruction is executed when the CPU module is stopped regardless whether the input condition for the MCS instruction is on or off. For MCS and MCR instructions, see page 7-28 (Basic Vol.).

Valid Data Types

W (word)	X
I (integer)	X
D (double word)	-
L (long)	-
F (float)	-

When a bit device such as I (input), Q (output), M (internal relay), or R (shift register) is designated as DATA, 16 points are used.
When a word device such as T (timer), C (counter), or D (data register) is designated as DATA, 1 point is used.

STPA WRITE (Stop Access Write)

STPA(*)	DATA(R)	STATUS	SLOT	ADDRESS	BYTE
WRITE	$* * * * *$	$* * * * *$	$*$	$* * *$	$* * *$

Start input is not needed for this instruction.

When the CPU module stops, data in the area starting at the device designated by DATA is written to ADDRESS in the intelligent module designated by SLOT.

BYTE designates the quantity of data to write.
STATUS stores the operating status code.

Note: STPA READ and STPA WRITE instructions can be used 64 times in a user program. When more than 64 STPA READ and STPA WRITE instructions are used in a user program, the excess instructions are not executed and error code 7 is stored in the data register designated as STATUS.

Applicable CPU Modules

FC5A-C10R2/C/D	$\begin{aligned} & \text { FC5A-C16R2/C/D } \\ & \text { FC5A-C24R2D } \end{aligned}$	FC5A-C24R2/C	FC5A-D16R	/RS			A-	32K	/S3	FC5A-	K1E/S1E
-	-	X	X			X				X	
Valid Devices (Run Access Write)											
Device	Function		I	Q	M	R	T	C	D	Constant	Repeat
DATA	First device address to extract data from		X	X	X	X	X	X	X	X	X
STATUS	Operating status code		-	-	-	-	-	-	X	-	-
SLOT	Intelligent module slot number		-	-	-	-	-	-	-	1-7	-
ADDRESS	First address in intelligent module to write data to		to	-	-	-	-	-	-	0-127	-
BYTE	Bytes of data to write		-	-	-	-	-	-	-	1-127	-

For the valid device address range, see pages 6-1 and 6-2 (Basic Vol.).
DATA: Specify the first device address to extract the data to write to the intelligent module.
When T (timer) or C (counter) is used as DATA for Stop Access Write, the timer/counter current value (TC or CC) is written to the intelligent module.
All data registers, including special data registers and expansion data registers, can be designated as DATA.
When a constant is designated as DATA, Repeat cannot be selected. For details about the data movement with or without Repeat, see page 16-7.

STATUS: \quad Specify a data register to store the operating status code. Data registers D0-D1999 and D10000-D49999 can be designated as STATUS. Special data registers and expansion data registers cannot be designated. For status code description, see page 16-6.
SLOT: Enter the slot number where the intelligent module is mounted. A maximum of seven intelligent modules can be used.
ADDRESS: Specify the first address in the intelligent module to store the data.
BYTE: \quad Specify the quantity of data to write in bytes.
The STPA WRITE instruction cannot be used in an interrupt program. If used, a user program execution error will result, turning on special internal relay M8004 and the ERR LED on the CPU module.
If a STPA WRITE instruction is programmed between MCS and MCR instructions, the STPA WRITE instruction is executed when the CPU module is stopped regardless whether the input condition for the MCS instruction is on or off. For MCS and MCR instructions, see page 7-28 (Basic Vol.).

Valid Data Types

W (word)	X
I (integer)	X
D (double word)	-
L (long)	-
F (float)	-

When a bit device such as I (input), Q (output), M (internal relay), or R (shift register) is designated as DATA, 16 points are used.

When a word device such as T (timer), C (counter), or D (data register) is designated as DATA, 1 point is used.

Intelligent Module Access Status Code

The data register designated as STATUS stores a status code to indicate the operating status and error of the intelligent module access operation. When status code 1, 3 , or 7 is stored, take a corrective measure as described in the table below:

Status Code	Status	Description	RUNA	STPA
$\mathbf{0}$	Normal	Intelligent module access is normal.	X	X
$\mathbf{1}$	Bus error	The intelligent module is not installed correctly. Power down the MicroSmart modules, and re-install the intelligent module correctly.	X	X
$\mathbf{3}$	Invalid module number	The designated module number is not found. Confirm the intelligent module number and correct the program.	X	X
$\mathbf{7}$	Excessive multiple usage	More than 64 STPA READ and STPA WRITE instructions are used. Elim- inate the excess instructions.	$\mathbf{-}$	X

STPA Execution during Program Download

When downloading a user program, the CPU module is automatically stopped as default. Depending on the timing of the initiation of the download and the total time to execute all STPA Read and Write instructions, some of the STPA instructions may not be executed. If this is the case, manually stop the CPU module. After more than 1 second, initiate user program download as shown in the chart below.

Automatic Stop Sequence

Manual Stop Sequence

STPA Execution between MCS and MCR Instructions

When the CPU module stops, STPA instructions programmed between MCS and MCR instructions are executed whether the input to the MCS instructions is on or off. For MCS and MCR instructions, see page 7-28 (Basic Vol.).

Example: RUNA READ

The following example illustrates the data movement of the RUNA READ instruction. The data movement of the STPA READ is the same as the RUNA READ instruction.

While input 10 is on, data of 5 bytes is read from the area starting at address 1 in intelligent module 1 and stored to the 5-byte area in data registers starting at D9.
Status code is stored in data register D100.

Example: RUNA WRITE without Repeat

The following example illustrates the data movement of the RUNA WRITE instruction without repeat designation. The data movement of the STPA WRITE is the same as the RUNA WRITE instruction.

While input I1 is on, data in data register D19 is written to the 5-byte area starting at address 1 in intelligent module 1.
Status code is stored in data register D101.

Example: RUNA WRITE with Repeat

The following example illustrates the data movement of the RUNA WRITE instruction with repeat designation. The data movement of the STPA WRITE is the same as the RUNA WRITE instruction.

While input 12 is on, data in 5-byte area starting at data register D22 is written to the 5-byte area starting at address 7 in intelligent module 1.

Status code is stored in data register D102.

17: Trigonometric Function Instructions

Introduction

Trigonometric function instructions are used for conversion between radian and degree values, conversion from radian value to sine, cosine, and tangent, and also calculation of arc sine, arc cosine, and arc tangent values.

RAD (Degree to Radian)

$\mathrm{S} 1 \cdot \mathrm{~S} 1+1^{\circ} \times \pi / 180 \rightarrow \mathrm{D} 1 \cdot \mathrm{D} 1+1 \mathrm{rad}$
When input is on, the degree value designated by source device S1 is converted into a radian value and stored to the destination designated by device D1.

Applicable CPU Modules

FC5A-C10R2/C/D	FC5A-C16R2/C/D	FC5A-C24R2/C/D	FC5A-D16RK1/RS1	FC5A-D32K3/S3	FC5A-D12K1E/S1E
X	X	X	X	X	X

Valid Devices

Device	Function	I	Q	M	R	T	C	D	Constant	Repeat
S1 (Source 1)	Degree value to convert into radian	-	-	-	-	-	-	X	X	-
D1 (Destination 1)	Destination to store conversion results	-	-	-	-	-	-	X	-	-

For the valid device address range, see pages 6-1 and 6-2 (Basic Vol.).
When the conversion result is not within the range between -3.402823×10^{38} and $-1.175495 \times 10^{-38}$ or between 1.175495×10^{-38} and 3.402823×10^{38}, special internal relay M8003 (carry or borrow) is turned on except when the conversion result is 0 . When the conversion result is between $-1.175495 \times 10^{-38}$ and 1.175495×10^{-38}, the destination device designated by D1 stores 0 .

When the data designated by S1 does not comply with the normal floating-point format, a user program execution error will result, turning on special internal relay M8004 and ERR LED on the CPU module.
Since the RAD instruction is executed in each scan while input is on, a pulse input from a SOTU or SOTD instruction should be used as required.

Valid Data Types

\mathbf{W} (word)	-
\mathbf{I} (integer)	-
D (double word)	-
L (long)	-
F (float)	X

Since the floating point data type is used, the source and destination devices use two consecutive data registers.

Example: RAD

When input I1 is turned on, the degree value of data registers D10 and D11 designated by source device S1 is converted into a radian value and stored to data registers D20 and D21 designated by destination device D1.

$$
270^{\circ} \times \pi / 180 \rightarrow 4.712389 \mathrm{rad}
$$

DEG (Radian to Degree)

$\mathrm{S} 1 \cdot \mathrm{~S} 1+1 \mathrm{rad} \times 180 / \pi \rightarrow \mathrm{D} 1 \cdot \mathrm{D} 1+1^{\circ}$
When input is on, the radian value designated by source device S1 is converted into a degree value and stored to the destination designated by device D1.

Applicable CPU Modules

FC5A-C10R2/C/D	FC5A-C16R2/C/D	FC5A-C24R2/C/D	FC5A-D16RK1/RS1	FC5A-D32K3/S3	FC5A-D12K1E/S1E
X	X	X	X	X	X

Valid Devices

Device	Function	I	\mathbf{Q}	\mathbf{M}	\mathbf{R}	\mathbf{T}	\mathbf{C}	\mathbf{D}	Constant	Repeat
S1 (Source 1)	Radian value to convert into degree	-	-	-	-	-	-	X	X	-
D1 (Destination 1)	Destination to store conversion results	-	-	-	-	-	-	X	-	

For the valid device address range, see pages 6-1 and 6-2 (Basic Vol.).
When the conversion result is not within the range between -3.402823×10^{38} and $-1.175495 \times 10^{-38}$ or between 1.175495×10^{-38} and 3.402823×10^{38}, special internal relay M8003 (carry or borrow) is turned on except when the conversion result is 0 . When the conversion result is below -3.402823×10^{38} or over 3.402823×10^{38}, causing an overflow, the destination device designated by D1 stores a value of minus or plus infinity.

When the data designated by S1 does not comply with the normal floating-point format, a user program execution error will result, turning on special internal relay M8004 and ERR LED on the CPU module.
Since the DEG instruction is executed in each scan while input is on, a pulse input from a SOTU or SOTD instruction should be used as required.

Valid Data Types

W (word)	-
\mathbf{I} (integer)	-
D (double word)	-
\mathbf{L} (long)	-
\mathbf{F} (float)	X

Since the floating point data type is used, the source and destination devices use two consecutive data registers.

Example: DEG

When input I1 is turned on, the radian value of data registers D10 and D11 designated by source device S 1 is converted into a degree value and stored to data registers D20 and D21 designated by destination device D1.

$$
4.712389 \mathrm{rad} \times 180 / \pi \rightarrow 270.0^{\circ}
$$

S1		D1	
D10.D11	4.712389	D20•D21	270.0

SIN (Sine)

$\sin \mathrm{S} 1 \cdot \mathrm{~S} 1+1 \rightarrow \mathrm{D} 1 \cdot \mathrm{D} 1+1$
When input is on, the sine of the radian value designated by source device S1 is stored to the destination designated by device D1.

Applicable CPU Modules

FC5A-C10R2/C/D	FC5A-C16R2/C/D	FC5A-C24R2/C/D	FC5A-D16RK1/RS1	FC5A-D32K3/S3	FC5A-D12K1E/S1E
X	X	X	X	X	X

Valid Devices

| Device | Function | I | \mathbf{Q} | \mathbf{M} | \mathbf{R} | \mathbf{T} | \mathbf{C} | \mathbf{D} | Constant | Repeat |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| S1 (Source 1) | Radian value to convert into sine value | - | - | - | - | - | - | X | X | - |
| D1 (Destination 1) | Destination to store conversion results | - | - | - | - | - | - | X | - | |

For the valid device address range, see pages 6-1 and 6-2 (Basic Vol.).
When the data designated by S 1 does not comply with the normal floating-point format, a user program execution error will result, turning on special internal relay M8004 and ERR LED on the CPU module.
Since the SIN instruction is executed in each scan while input is on, a pulse input from a SOTU or SOTD instruction should be used as required.

Valid Data Types

\mathbf{W} (word)	-
\mathbf{I} (integer)	-
\mathbf{D} (double word)	-
\mathbf{L} (long)	-
F (float)	X

Since the floating point data type is used, the source and destination devices use two consecutive data registers.

Example: SIN

When input I1 is turned on, the sine of the radian value of data registers D10 and D11 designated by source device S1 is stored to data registers D20 and D21 designated by destination device D1.

$$
\begin{aligned}
& 3.926991 \mathrm{rad}=5 \pi / 4 \mathrm{rad} \\
& \sin 5 \pi / 4 \rightarrow-0.7071069
\end{aligned}
$$

S1		D1	
D10.D11	3.926991	D20.D21	-0.7071069

COS (Cosine)

$\cos \mathrm{S} 1 \cdot \mathrm{~S} 1+1 \rightarrow \mathrm{D} 1 \cdot \mathrm{D} 1+1$
When input is on, the cosine of the radian value designated by source device S 1 is stored to the destination designated by device D1.

Applicable CPU Modules

FC5A-C10R2/C/D	FC5A-C16R2/C/D	FC5A-C24R2/C/D	FC5A-D16RK1/RS1	FC5A-D32K3/S3	FC5A-D12K1E/S1E
X	X	X	X	X	X

Valid Devices

| Device | Function | \mathbf{I} | \mathbf{Q} | \mathbf{M} | \mathbf{R} | \mathbf{T} | \mathbf{C} | \mathbf{D} | Constant | Repeat | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| S1 (Source 1) | Radian value to convert into cosine value | - | - | - | - | - | - | X | X | | - |
| D1 (Destination 1) | Destination to store conversion results | - | - | - | - | - | - | X | - | | |

For the valid device address range, see pages 6-1 and 6-2 (Basic Vol.).
When the data designated by S1 does not comply with the normal floating-point format, a user program execution error will result, turning on special internal relay M8004 and ERR LED on the CPU module.

Since the COS instruction is executed in each scan while input is on, a pulse input from a SOTU or SOTD instruction should be used as required.

Valid Data Types

\mathbf{W} (word)	-
\mathbf{I} (integer)	-
\mathbf{D} (double word)	-
\mathbf{L} (long)	-
\mathbf{F} (float)	X

Since the floating point data type is used, the source and destination devices use two consecutive data registers.

Example: COS

When input 11 is turned on, the cosine of the radian value of data registers D10 and D11 designated by source device S1 is stored to data registers D20 and D21 designated by destination device D1.
$3.926991 \mathrm{rad}=5 \pi / 4 \mathrm{rad}$
$\cos 5 \pi / 4 \rightarrow-0.7071068$

S1		D1	
D10.D11	3.926991	D20.D21	-0.7071068

TAN (Tangent)

$\tan \mathrm{S} 1 \cdot \mathrm{~S} 1+1 \rightarrow \mathrm{D} 1 \cdot \mathrm{D} 1+1$
When input is on, the tangent of the radian value designated by source device S1 is stored to the destination designated by device D1.

Applicable CPU Modules

FC5A-C10R2/C/D	FC5A-C16R2/C/D	FC5A-C24R2/C/D	FC5A-D16RK1/RS1	FC5A-D32K3/S3	FC5A-D12K1E/S1E
X	X	X	X	X	X

Valid Devices

Device	Function	I	Q	M	R	T	C	D	Constant	Repeat
S1 (Source 1)	Radian value to convert into tangent value	-	-	-	-	-	-	X	X	-
D1 (Destination 1)	Destination to store conversion results	-	-	-	-	-	-	X	-	-

For the valid device address range, see pages 6-1 and 6-2 (Basic Vol.).
When the conversion result is not within the range between -3.402823×10^{38} and $-1.175495 \times 10^{-38}$ or between 1.175495×10^{-38} and 3.402823×10^{38}, special internal relay M8003 (carry or borrow) is turned on except when the conversion result is 0 . When the conversion result is below -3.402823×10^{38} or over 3.402823×10^{38}, causing an overflow, the destination device designated by D1 stores a value of minus or plus infinity.

When the data designated by S1 does not comply with the normal floating-point format, a user program execution error will result, turning on special internal relay M8004 and ERR LED on the CPU module.
Since the TAN instruction is executed in each scan while input is on, a pulse input from a SOTU or SOTD instruction should be used as required.

Valid Data Types

W (word)	-
I (integer)	-
D (double word)	-
L (long)	-
F (float)	X

Since the floating point data type is used, the source and destination devices use two consecutive data registers.

Example: TAN

When input I1 is turned on, the tangent of the radian value of data registers D10 and D11 designated by source device S1 is stored to data registers D20 and D21 designated by destination device D1.
$3.926991 \mathrm{rad}=5 \pi / 4 \mathrm{rad}$
$\tan 5 \pi / 4 \rightarrow 1.000001$

S1		D1	
D10•D11	3.926991	D20.D21	1.000001

ASIN (Arc Sine)

$\operatorname{asin} \mathrm{S} 1 \cdot \mathrm{~S} 1+1 \rightarrow \mathrm{D} 1 \cdot \mathrm{D} 1+1 \mathrm{rad}$
When input is on, the arc sine of the value designated by source device S1 is stored in radians to the destination designated by device D1.

The $\mathrm{S} 1 \cdot \mathrm{~S} 1+1$ value must be within the following range:

```
-1.0 \leq S1.S1+1 \leq -1.0
```

If the S1•S1+1 value is not within this range, an indefinite value is stored to D1•D1+1.

Applicable CPU Modules

FC5A-C10R2/C/D	FC5A-C16R2/C/D	FC5A-C24R2/C/D	FC5A-D16RK1/RS1	FC5A-D32K3/S3	FC5A-D12K1E/S1E
X	X	X	X	X	X

Valid Devices

| Device | Function | \mathbf{I} | \mathbf{Q} | \mathbf{M} | \mathbf{R} | \mathbf{T} | \mathbf{C} | \mathbf{D} | Constant | Repeat | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| S1 (Source 1) | Arc sine value to convert into radian | - | - | - | - | - | - | X | X | | - |
| D1 (Destination 1) | Destination to store conversion results | - | - | - | - | - | - | X | - | | |

For the valid device address range, see pages 6-1 and 6-2 (Basic Vol.).
When the data designated by source device $S 1$ is not within the range between -1.0 and 1.0 or does not comply with the normal float-ing-point format, a user program execution error will result, turning on special internal relay M8004 and ERR LED on the CPU module.
Since the ASIN instruction is executed in each scan while input is on, a pulse input from a SOTU or SOTD instruction should be used as required.

Valid Data Types

W (word)	-
\mathbf{I} (integer)	-
\mathbf{D} (double word)	-
\mathbf{L} (long)	-
\mathbf{F} (float)	X

Since the floating point data type is used, the source and destination devices use two consecutive data registers.

Example: ASIN

When input 11 is turned on, the arc sine of the value of data registers D10 and D11 designated by source device S1 is stored to data registers D20 and D21 designated by destination device D1.

$$
\begin{aligned}
& \operatorname{asin}-0.7071069 \rightarrow-0.7853982 \mathrm{rad} \\
& -0.7853982 \mathrm{rad}=-\pi / 4 \mathrm{rad}
\end{aligned}
$$

S1		D1	
D10•D11	-0.7071069	D20•D21	-0.7853982

ACOS (Arc Cosine)

$\operatorname{acos} \mathrm{S} 1 \cdot \mathrm{~S} 1+1 \rightarrow \mathrm{D} 1 \cdot \mathrm{D} 1+1 \mathrm{rad}$
When input is on, the arc cosine of the value designated by source device S1 is stored in radians to the destination designated by device D1.

The S1•S1+1 value must be within the following range:
$-1.0 \leq \mathrm{S} 1 \cdot \mathrm{~S} 1+1 \leq-1.0$
If the $\mathrm{S} 1 \cdot \mathrm{~S} 1+1$ value is not within this range, an indefinite value is stored to D1•D1+1.

Applicable CPU Modules

FC5A-C10R2/C/D	FC5A-C16R2/C/D	FC5A-C24R2/C/D	FC5A-D16RK1/RS1			FC5A-D32K3/S3				FC5A-D12K1E/S1E	
X	X	X	X			X				X	
Valid Devices											
Device	Function		I	Q	M	R	T	C	D	Constant	Repeat
S1 (Source 1)	Arc cosine value to convert into radian		-	-	-	-	-	-	X	X	-
D1 (Destination 1)	Destination to store conversion results		-	-	-	-	-	-	X	-	-

For the valid device address range, see pages 6-1 and 6-2 (Basic Vol.).
When the data designated by source device S1 is not within the range between -1.0 and 1.0 or does not comply with the normal float-ing-point format, a user program execution error will result, turning on special internal relay M8004 and ERR LED on the CPU module.
Since the ACOS instruction is executed in each scan while input is on, a pulse input from a SOTU or SOTD instruction should be used as required.

Valid Data Types

W (word)	-
I (integer)	-
\mathbf{D} (double word)	-
\mathbf{L} (long)	-
F (float)	X

Since the floating point data type is used, the source and destination devices use two consecutive data registers.

Example: ACOS

When input I1 is turned on, the arc cosine of the value of data registers D10 and D11 designated by source device S1 is stored to data registers D20 and D21 designated by destination device D1.
acos $-0.7071068 \rightarrow 2.356195 \mathrm{rad}$
$2.356195 \mathrm{rad}=3 \pi / 4 \mathrm{rad}$

ATAN (Arc Tangent)

$\operatorname{atan} \mathrm{S} 1 \cdot \mathrm{~S} 1+1 \rightarrow \mathrm{D} 1 \cdot \mathrm{D} 1+1 \mathrm{rad}$
When input is on, the arc tangent of the value designated by source device S1 is stored in radians to the destination designated by device D1.

Applicable CPU Modules

FC5A-C10R2/C/D	FC5A-C16R2/C/D	FC5A-C24R2/C/D	FC5A-D16RK1/RS1	FC5A-D32K3/S3	FC5A-D12K1E/S1E
X	X	X	X	X	X

Valid Devices

Device	Function	I	Q	M	R	T	C	D	Constant	Repeat
S1 (Source 1)	Arc tangent value to convert into radian	-	-	-	-	-	-	X	X	-
D1 (Destination 1)	Destination to store conversion results	-	-	-	-	-	-	X	-	-

For the valid device address range, see pages 6-1 and 6-2 (Basic Vol.).
When the data designated by source device S1 does not comply with the normal floating-point format, a user program execution error will result, turning on special internal relay M8004 and ERR LED on the CPU module.
Since the ATAN instruction is executed in each scan while input is on, a pulse input from a SOTU or SOTD instruction should be used as required.

Valid Data Types

W (word)	-
I (integer)	-
D (double word)	-
L (long)	-
F (float)	X

Since the floating point data type is used, the source and destination devices use two consecutive data registers.

Example: ATAN

When input 11 is turned on, the arc tangent of the value of data registers D10 and D11 designated by source device S1 is stored to data registers D20 and D21 designated by destination device D1.

$$
\begin{aligned}
& \text { atan } 0.4142136 \rightarrow 0.3926992 \mathrm{rad} \\
& 0.3926992 \mathrm{rad}=\pi / 8 \mathrm{rad}
\end{aligned}
$$

S1		D1	
D10-D11	0.4142136	D20.D21	0.3926992

18: Logarithm / Power Instructions

Introduction

This chapter describes logarithm and power instructions which are used to calculate logarithm or powered values of source devices.

LOGE (Natural Logarithm)

$\log _{\mathrm{e}} \mathrm{S} 1 \cdot \mathrm{~S} 1+1 \rightarrow \mathrm{D} 1 \cdot \mathrm{D} 1+1$
When input is on, the natural logarithm of the binary data designated by source device S1 is stored to the destination designated by device D1.

Applicable CPU Modules

FC5A-C10R2/C/D	FC5A-C16R2/C/D	FC5A-C24R2/C/D	FC5A-D16RK1/RS1	FC5A-D32K3/S3	FC5A-D12K1E/S1E
X	X	X	X	X	X

Valid Devices

Device	Function	I	Q	M	R	T	C	D	Constant	Repeat
S1 (Source 1)	Binary data to convert into natural logarithm	-	-	-	-	-	-	X	X	-
D1 (Destination 1)	Destination to store conversion results	-	-	-	-	-	-	X	-	-

For the valid device address range, see pages 6-1 and 6-2 (Basic Vol.).
When the data designated by source device S 1 is less than or equal to 0 or does not comply with the normal floating-point format, a user program execution error will result, turning on special internal relay M8004 and ERR LED on the CPU module.
Since the LOGE instruction is executed in each scan while input is on, a pulse input from a SOTU or SOTD instruction should be used as required.

Valid Data Types

W (word)	-
I (integer)	-
\mathbf{D} (double word)	-
\mathbf{L} (long)	-
F (float)	X

Since the floating point data type is used, the source and destination devices use two consecutive data registers.

Example: LOGE

When input 11 is on, the natural logarithm of the binary data of data registers D10 and D11 designated by source device S1 is stored to data registers D20 and D21 designated by destination device D1.

LOG10 (Common Logarithm)

$\log _{10} \mathrm{~S} 1 \cdot \mathrm{~S} 1+1 \rightarrow \mathrm{D} 1 \cdot \mathrm{D} 1+1$
When input is on, the common logarithm of the binary data designated by source device S1 is stored to the destination designated by device D1.

Applicable CPU Modules

FC5A-C10R2/C/D	FC5A-C16R2/C/D	FC5A-C24R2/C/D	FC5A-D16RK1/RS1	FC5A-D32K3/S3	FC5A-D12K1E/S1E
X	X	X	X	X	X

Valid Devices

| Device | Function | I | \mathbf{Q} | \mathbf{M} | \mathbf{R} | \mathbf{T} | \mathbf{C} | \mathbf{D} | Constant | Repeat | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| S1 (Source 1) | Binary data to convert into common logarithm | - | - | - | - | - | - | X | X | | - |
| D1 (Destination 1) | Destination to store conversion results | - | - | - | - | - | - | X | - | | |

For the valid device address range, see pages 6-1 and 6-2 (Basic Vol.).
When the data designated by source device S 1 is less than or equal to 0 or does not comply with the normal floating-point format, a user program execution error will result, turning on special internal relay M8004 and ERR LED on the CPU module.
Since the LOG10 instruction is executed in each scan while input is on, a pulse input from a SOTU or SOTD instruction should be used as required.

Valid Data Types

\mathbf{W} (word)	-
\mathbf{I} (integer)	-
\mathbf{D} (double word)	-
\mathbf{L} (long)	-
F (float)	X

Since the floating point data type is used, the source and destination devices use two consecutive data registers.

Example: LOG10

When input I1 is on, the common logarithm of the binary data of data registers D10 and D11 designated by source device S1 is stored to data registers D20 and D21 designated by destination device D1.
$\log _{10} 0.0000278 \rightarrow-4.555955$
S1 D1

EXP (Exponent)

$\mathrm{e}^{\mathrm{s} 1 \cdot 51+1} \rightarrow$ D1-D1+1
When input is on, e is raised to the power $\mathrm{S} 1 \cdot \mathrm{~S} 1+1$ designated by source device S 1 and is stored to the destination designated by device D1.
e (base of natural logarithm) $=2.7182818$
Applicable CPU Modules

FC5A-C10R2/C/D	FC5A-C16R2/C/D	FC5A-C24R2/C/D	FC5A-D16RK1/RS1	FC5A-D32K3/S3	FC5A-D12K1E/S1E
X	X	X	X	X	X

Valid Devices

Device	Function	\mathbf{I}	\mathbf{Q}	\mathbf{M}	\mathbf{R}	\mathbf{T}	\mathbf{C}	\mathbf{D}	Constant	Repeat
S1 (Source 1)	Binary data of exponent	-	-	-	-	-	-	X	X	
D1 (Destination 1)	Destination to store results	-	-	-	-	-	-	X	-	

For the valid device address range, see pages 6-1 and 6-2 (Basic Vol.).
When the operation result is not within the range between -3.402823×10^{38} and $-1.175495 \times 10^{-38}$ or between 1.175495×10^{-38} and 3.402823×10^{38}, special internal relay M8003 (carry or borrow) is turned on except when the result is 0 .

When the operation result is between $-1.175495 \times 10^{-38}$ and 1.175495×10^{-38}, the destination device designated by D1 stores 0 . When the operation result is less than -3.402823×10^{38} or larger than 3.402823×10^{38}, causing an overflow, the destination device designated by D1 stores a value of minus or plus infinity.
When the data designated by source device S1 does not comply with the normal floating-point format, a user program execution error will result, turning on special internal relay M8004 and ERR LED on the CPU module.
Since the EXP instruction is executed in each scan while input is on, a pulse input from a SOTU or SOTD instruction should be used as required.

Valid Data Types

\mathbf{W} (word)	-
\mathbf{I} (integer)	-
\mathbf{D} (double word)	-
\mathbf{L} (long)	-
F (float)	X

Since the floating point data type is used, the source and destination devices use two consecutive data registers.

Example: EXP

When input I1 is on, e is raised to the data of data registers D10 and D11 designated by source device S 1 and the operation result is stored to data registers D20 and D21 designated by destination device D1.

$$
e^{2}=2.7182818^{2} \rightarrow 7.389056
$$

POW (Power)

$\mathrm{S} 1 \cdot \mathrm{~S} 1+1^{\mathrm{S} \cdot \mathrm{S} 2+1} \rightarrow \mathrm{D} 1 \cdot \mathrm{D} 1+1$
When input is on, binary data designated by source device $S 1$ is raised to the power $\mathrm{S} 2 \cdot \mathrm{~S} 2+1$ designated by source device S 2 and the operation result is stored to the destination designated by device D1.

Applicable CPU Modules

FC5A-C10R2/C/D	FC5A-C16R2/C/D	FC5A-C24R2/C/D	FC5A-D16RK1/RS1	FC5A-D32K3/S3	FC5A-D12K1E/S1E
X	X	X	X	X	X

Valid Devices

Device	Function	I	\mathbf{Q}	\mathbf{M}	\mathbf{R}	\mathbf{T}	\mathbf{C}	\mathbf{D}	Constant	Repeat
S1 (Source 1)	Binary data of base	-	-	-	-	-	-	X	X	
S2 (Source 2)	Binary data of exponent	-	-	-	-	-	-	X	X	
D1 (Destination 1)	Destination to store results	-	-	-	-	-	-	X	-	

For the valid device address range, see pages 6-1 and 6-2 (Basic Vol.).
When the operation result is not within the range between -3.402823×10^{38} and $-1.175495 \times 10^{-38}$ or between 1.175495×10^{-38} to 3.402823×10^{38}, special internal relay M8003 (carry or borrow) is turned on, except when the result is 0 .
When the operation result is between $-1.175495 \times 10^{-38}$ and 1.175495×10^{-38}, the destination device designated by D1 stores 0 .
When the operation result is less than -3.402823×10^{38} or greater than 3.402823×10^{38}, causing an overflow, the destination device designated by D1 stores a value of minus or plus infinity.

When one of the following conditions occurs, a user program execution error will result, turning on special internal relay M8004 and ERR LED on the CPU module.

- The data designated by source device S 1 is less than 0 and the data designated by source device S 2 is not an integer.
- The data designated by source device $S 1$ is 0 and the data designated by source device $S 2$ is less than or equal to 0 .
- The data designated by source device S1 or S2 does not comply with the normal floating-point format.

Since the POW instruction is executed in each scan while input is on, a pulse input from a SOTU or SOTD instruction should be used as required.

Valid Data Types

W (word)	-
\mathbf{I} (integer)	-
D (double word)	-
L (long)	-
F (float)	X

Since the floating point data type is used, the source and destination devices use two consecutive data registers.

Example: POW

When input I1 is on, the data of data registers D10 and D11 designated by source device S 1 is raised to the power D20•D20+1 designated by source device S2 and the operation result is stored to data registers D30 and D31 designated by destination device D1.

$$
4^{1.25} \rightarrow 5.656856
$$

S1		S2		D1	
D10.D11	4.0	D20•D21	1.25	D30•D31	5.656856

19: File Data Processing Instructions

Introduction

File data processing instructions implement the first-in first-out (FIFO) data structure. FIFOF (FIFO Format) instructions initialize the FIFO data files storing the data. FIEX (First-In Execute) instructions store new data to the FIFO data files, and FOEX (First-Out Execute) instructions retrieve the stored data from the FIFO data files. The first data to be stored to the FIFO data files by FIEX instructions will be the first data to be retrieved by FOEX instructions.
NDSRC (N Data Search) instruction has been added to search a designated value through a specified range.

FIFOF (FIFO Format)

When input is on, FIFOF instruction initializes an FIFO data file. Each data file has unique number 0 through 9 . A maximum of 10 data files can be used in a user program.

This instruction is available on upgraded CPU modules with system program version 200 or higher.

Applicable CPU Modules

FC5A-C10R2/C/D	FC5A-C16R2/C/D	FC5A-C24R2/C/D	FC5A-D16RK1/RS1	FC5A-D32K3/S3	FC5A-D12K1E/S1E
X	X	X	X	X	X

Valid Devices

Device	Function	\mathbf{I}	\mathbf{Q}	\mathbf{M}	\mathbf{R}	\mathbf{T}	\mathbf{C}	\mathbf{D}	Constant	Repeat
N (File Number)	File Number	-	-	-	-	-	-	-	$0-9$	
S1 (Source 1)	Quantity of data registers per record	-	-	-	-	-	-	-	$1-255$	-
S2 (Source 2)	Quantity of records	-	-	-	-	-	-	-	$2-255$	-
D1 (Destination 1)	First data register to store FIFO data file	-	-	-	-	-	-	X	-	
D2 (Destination 2)	FIFO status output	-	-	$\mathbf{1}$	-	-	-	-	-	

For the valid device address range, see pages 6-1 and 6-2 (Basic Vol.).

- Special internal relays cannot be designated as D2.

Since the FIFOF instruction is executed in each scan while input is on, a pulse input from a SOTU or SOTD instruction should be used as required.

Valid Data Types

W (word)	X
I (integer)	-
\mathbf{D} (double word)	-
\mathbf{L} (long)	-
F (float)	-

When an M (internal relay) is designated as the D 2 , three internal relays starting with the device designated by D2 are used.

When a D (data register) is designated as the $\mathrm{D} 1, \mathrm{~S} 1 \times \mathrm{S} 2+2$ data registers starting with the device designated by D1 are used.

Destination Device D1 (FIFO Data File)

FIFO data files are initialized when corresponding FIFOF instructions are executed. FIFO data file is placed in the area starting with the device designated by D1 and occupies as many as $\mathrm{S} 1 \times \mathrm{S} 2+2$ data registers. The size of each record is equal to S1. S2 records of data can be stored in an FIFO data file using FIEX instructions. The stored data can be retrieved from the FIFO data file using FOEX instructions.

Device	Function	Description
D1+0	Fl pointer	The FI pointer indicates the position to store new data into the FIFO data file. When an FIEX instruction is executed, the new data in data registers starting with the device designated by S1 of the FIEX instruction is stored at the position indicated by the FI pointer, and the FI pointer is incremented by 1 to indicate the position to store the next data. When the FI pointer indicates the last record of the FIFO data file, and an FIEX instruction is executed, the FI pointer will return to 0 .
D1+1	FO pointer	The FO pointer indicates the position to retrieve the stored data from the FIFO data file. When an FOEX instruction is executed, the data at the position indicated by the FIFO pointer is retrieved and stored to the data registers starting with the device designated by D1 of the FOEX instruction, and the FO pointer is incremented by 1 to indicate the position to retrieve the next data. When the FO pointer indicates the last record of the FIFO data file, and an FOEX instruction is executed, the FO pointer will return to 0 .
D1+2	Record 0	The first record to store the data.
\ldots		
D1+(S1+1)		
D1+(S1+2)	Record 1	The second record to store the data.
...		
$\mathrm{D} 1+(\mathrm{S} 1 \times 2+1)$		
D1+(S1×(S2-1)+2)	Record S2-1	The last record to store the data.
...		
D1+(S1×S2+1)		

Destination Device D2 (FIFO Status Output)

When FIEX or FOEX instructions are executed, the following internal relays are turned on or off according to the execution status.

Device	Function	Description
D2+0	Data file full output	When the value stored in the FI pointer (D1+0) is equal to the value stored in the FO pointer (D1+1) - 1, the FIFO data file is full, and no more data can be stored. If an FIEX instruction is executed when the FIFO data file is full, no operation is executed, and the data file full output (D2+0) will be turned on.
D2+1	Data file empty output	When the value stored in the FI pointer (D1+0) is equal to the value stored in the FO pointer (D1+1), the FIFO data file is empty. If an FOEX instruction is executed when the FIFO data file is empty, no operation is executed, and the data file empty output (D2+1) will be turned on.
D2+2	Pointer out of range output	The value stored in the FI or FO pointer can be 0 through S2-1. When an FIEX or FOEX instruction is executed while the FI or FO pointer value is out of the valid range, no operation is executed, and the pointer out of range output (D2 +2$)$ will be turned on.

FIEX (First-In Execute)

When input is on, the data stored in data registers starting with the device designated by S1 is stored to the corresponding FIFO data file.

This instruction is available on upgraded CPU modules with system program version 200 or higher.

Applicable CPU Modules

FC5A-C10R2/C/D	FC5A-C16R2/C/D	FC5A-C24R2/C/D	FC5A-D16RK1/RS1	FC5A-D32K3/S3	FC5A-D12K1E/S1E
X	X	X	X	X	X

Valid Devices

Device	Function	\mathbf{I}	\mathbf{Q}	\mathbf{M}	\mathbf{R}	\mathbf{T}	\mathbf{C}	\mathbf{D}	Constant	Repeat
N (File Number)	File number	-	-	-	-	-	-	-	$0-9$	-
S1 (Source 1)	First data register to store data to FIFO data file	-	-	-	-	-	-	X	-	-

For the valid device address range, see pages 6-1 and 6-2 (Basic Vol.).
Make sure that FIEX instructions are executed after the corresponding FIFOF instruction has initialized the FIFO data file. If FIEX instructions are executed without executing the corresponding FIFOF instruction, a user program execution error will result, turning on special internal relay M8004 and the ERR LED on the CPU module.
Since the FIEX instruction is executed in each scan while input is on, a pulse input from a SOTU or SOTD instruction should be used as required.

Valid Data Types

W (word)	X
I (integer)	-
D (double word)	-
L (long)	-
F (float)	-

When a D (data register) is designated as the source, data registers as many as the value stored in device S1 of the corresponding FIFOF instruction are used.

FOEX (First-Out Execute)

When input is on, the data is retrieved from the corresponding FIFO data file and stored to the data registers starting with the device designated by D1.
This instruction is available on upgraded CPU modules with system program version 200 or higher.

Applicable CPU Modules

FC5A-C10R2/C/D	FC5A-C16R2/C/D	FC5A-C24R2/C/D	FC5A-D16RK1/RS1	FC5A-D32K3/S3	FC5A-D12K1E/S1E
X	X	X	X	X	X

Valid Devices

Device	Function	\mathbf{I}	\mathbf{Q}	\mathbf{M}	\mathbf{R}	\mathbf{T}	\mathbf{C}	\mathbf{D}	Constant	Repeat
N (File Number)	File number	-	-	-	-	-	-	-	$0-9$	-
D1 (Destination 1)	First data register number to store data	-	-	-	-	-	-	X	-	-

For the valid device address range, see pages 6-1 and 6-2 (Basic Vol.).
Make sure that FOEX instructions are executed after the corresponding FIFOF instruction has initialized the FIFO data file. If FOEX instructions are executed without executing the corresponding FIFOF instruction, a user program execution error will result, turning on special internal relay M8004 and the ERR LED on the CPU module.
Since the FOEX instruction is executed in each scan while input is on, a pulse input from a SOTU or SOTD instruction should be used as required.

Valid Data Types

W (word)	X
\mathbf{I} (integer)	-
D (double word)	-
L (long)	-
F (float)	-

When a D (data register) is designated as the destination, data registers as many as the value stored in device S1 of the corresponding FIFOF instruction are used.

Example: FIFOF, FIEX, and FOEX

This program demonstrates a user program of the FIFOX, FIEX, and FOEX instructions to use an FIFO data file.

File number:	2
Quantity of data registers per record:	3
Quantity of records:	4
FIFO Data file:	D100 through D113 ($3 \times 4+2$ data registers)
FIFO status outputs:	M100 through M102

Ladder Diagram

M8120 is the initialize pulse special internal relay.
When the CPU starts, MOV sets 0 to FI and FO pointers, and FIFOF initializes FIFO data file 2.

When input IO is turned on, the data in D10 through D12 are stored to the FIFO data file 2.

When input I1 is turned on, the data in D20 through D22 are stored to the FIFO data file 2.

When input 12 is turned on, the first data is retrieved from the FIFO data file 2 and stored to D50 through D52.

FIFO Data File

The table blow shows the data stored in FIFO data file 2 when inputs 10,11 , and $I 2$ are turned on in this order. Only the valid data managed by the FIFOF, FIEX, and FOEX instructions are shown in the table.

Function	Device Address	Input I0	Input I1	Input I2
FI Pointer	D100	1	2	2
FO Pointer	D101	0	0	1
Record 0	D102 through D104	D10, D11, D12	D10, D11, D12	-
Record 1	D105 through D107	-	D20, D21, D22	D20, D21, D22
Record 2	D108 through D110	-	-	-
Record 3	D111 through D113	-	-	-

NDSRC (N Data Search)

When input is on, a value specified by device S 1 is sought. Data registers are searched, starting with the data register designated by device S2. Device S3 specifies the quantity of 1-word or 2-word blocks of data registers to search, depending on the data type.

The offset of the data register where a match first occurred is stored in data register designated by device D1. The quantity of times the value was matched is stored in the next data register. When the search results in no match, 65535 is stored in device D1 and 0 is stored in device D+1.

This instruction is available on upgraded CPU modules with system program version 210 or higher.

Applicable CPU Modules

FC5A-C10R2/C/D	FC5A-C16R2/C/D	FC5A-C24R2/C/D	FC5A-D16RK1/RS1			FC5A-D32K3/S3				FC5A-D12K1E/S1E	
X	X	X	X			X				X	
Valid Devices											
Device	Function		I	Q	M	R	T	C	D	Constant	Repeat
S1 (Source 1)	Value to be sought		-	-	-	-	-	-	X	X	-
S2 (Source 2)	First data register number to search		-	-	-	-	-	-	X	-	-
S3 (Source 3)	Quantity of blocks to search		-	-	-	-	-	-	X	X	-
D1 (Destination 1)	Search result		-	-	-	-	-	-	X	-	-

For the valid device address range, see pages 6-1 and 6-2 (Basic Vol.).
Source S1 data specifies the value to be sought and the valid range depends on the data type.
The search range cannot straddle data registers, expansion data registers, and special data registers. Make sure that the sum of data register numbers designated by S1 and S2 does not result in a different data register range.

For source S3 and destination D1, 1 word is always used without regard to the data type.
Destination D1 occupies two consecutive data registers starting with the device designated by D1. Data registers D0-D1998, D2000D7998, and D10000-D49998 can be designated as destination D1.

When F (float) data type is selected and S1 or S2 does not comply with the normal floating-point format, a user program execution error will result, turning on special internal relay M8004 and ERR LED on the CPU module.

When S3 is an invalid number or the sum of S2 and S3 is not within the valid data register range, a user program execution error will result, turning on special internal relay M8004 and ERR LED on the CPU module.

Since the NDSRC instruction is executed in each scan while input is on, a pulse input from a SOTU or SOTD instruction should be used as required.

Valid Data Types

W (word)	X
I (integer)	X
\mathbf{D} (double word)	X
L (long)	X
F (float)	X

When a word device such as D (data register) is designated as the source, 1 point (word or integer data type) or 2 points (double-word, long, or float data type) are used.

Quantity of Source and Destination Devices

Depending on the data type, source devices S1 and S2 use a different quantity of devices. Source device S3 and destination device D1 always use 1 word without regards to the data type.

Device	W (word), I (integer)	D (double word), L (long), F (float)
S1, S2	1 word device	2 word devices
S3, D1	1 word device	1 word device

Examples: NDSRC

The following examples demonstrate the NDSRC instruction to search data of three different data types.

- Data Type: Word

- Data Type: Double Word

- Data Type: Float

10	NDSRC(F)	S1	S2	S3
D10	D100	5	D200	

20: Clock Instructions

Introduction

TADD (time addition) and TSUB (time subtraction) instructions perform addition or subtraction of two time data, respectively. The data can be selected from time (hour, minute, and second) or date/time (year, month, day, day of week, hour, minute, and second).
HTOS (HMS to sec) and STOH (sec to HMS) instructions perform conversion of time data between hours, minutes, seconds and seconds.

HOUR (hour meter) instruction measures the on duration of the input and compares the total duration to a preset value. When the preset value is reached, an output or internal relay is turned on.

TADD (Time Addition)

$$
\text { S1 + S2 } \rightarrow \mathrm{D} 1, \mathrm{CY}
$$

When input is on, time data designated by source device S2 are added to date/time data designated by source device S 1 , depending on the selected mode. The result is stored to destination device D1 and carry (M8003).
This instruction is available on upgraded CPU modules with system program version 210 or higher.

Applicable CPU Modules

FC5A-C10R2/C/D	FC5A-C16R2/C/D	FC5A-C24R2/C/D	FC5A-D16RK1/RS1	FC5A-D32K3/S3	FC5A-D12K1E/S1E
X	X	X	X	X	X

Valid Devices

Device	Function	\mathbf{I}	\mathbf{Q}	\mathbf{M}	\mathbf{R}	\mathbf{T}	\mathbf{C}	\mathbf{D}	Constant	Repeat
Mode	Selection of S1 data range	-	-	-	-	-	-	-	0,1	-
S1 (Source 1)	Date/time data to add to	-	-	-	-	-	-	X	-	
S2 (Source 2)	Time data to add	-	-	-	-	-	-	X	-	
D1 (Destination 1)	Destination to store results	-	-	-	-	-	-	X	-	-

For the valid device address range, see pages 6-1 and 6-2 (Basic Vol.).
When Mode 0 is selected, source devices S1 and S2 and destination device D1 occupy 3 consecutive data registers starting with the designated device. Data registers D0-D1997, D2000-D7997, and D10000-D49997 can be designated as these devices.
When Mode 1 is selected, source device S1 and destination device D1 occupy 7 consecutive data registers starting with the designated device. Data registers D0-D1993, D2000-D7993, and D10000-D49993 can be designated as these devices. Source device S2 occupies 3 consecutive data registers starting with the designated device. Data registers D0-D1997, D2000-D7997, and D10000-D49997 can be designated as source device S2.

Since the TADD instruction is executed in each scan while input is on, a pulse input from a SOTU or SOTD instruction should be used as required.

Mode 0

When mode 0 is selected, time data (hour, minute, and second) stored in 3 data registers starting with source device S2 are added to the time data (hour, minute, and second) stored in 3 data registers starting with source device S1. The results are stored to 3 data registers starting with destination device D1.

Hour data can be 0 through 23. Minute and second data can be 0 through 59.
When the execution result exceeds 23:59:59, the result is subtracted by 24 hours and stored to the data register designated by destination device D1, turning on special internal relay M8003 (carry).

When any of the hour, minute, or second data is out of the valid range, a user program execution error will result, turning on special internal relay M8004 and the ERR LED on the CPU module.

Mode 1

When mode 1 is selected, time data (hour, minute, and second) stored in 3 data registers starting with source device S 2 are added to the date/time data (year, month, day, day of week, hour, minute, and second) stored in 7 data registers starting with source device S1. The results are stored to 7 data registers starting with destination device D1.

Note: Device S1+3 in source 1 is not used for execution and need not be designated.

Source 1 data is compatible with leap years.
For source 1: Year data can be 0 through 99. Month data 1 through 12. Day data 1 through 31. Hour data 0 through 23 . Minute and second data 0 through 59.
Year data 0 through 99 is processed as year 2000 through 2099.
For source 2: Hour data can be 0 through 65535. Minute and second data can be 0 through 59.
Destination 1: The day of week is calculated automatically from the resultant year, month, and day, and stored to device D1+3.
Day of week data represent: 0 (Sunday), 1 (Monday), 2 (Tuesday), 3 (Wednesday), 4 (Thursday), 5 (Friday), and 6 (Saturday)
When source 1 contains invalid day/time data, a user program execution error will result, turning on special internal relay M8004 and the ERR LED on the CPU module.
When the execution result exceeds 99 year 12 month 31 day 23:59:59, a user program execution error will result, turning on special internal relay M8004 and the ERR LED on the CPU module.

Examples: TADD

The following examples demonstrate the TADD instruction to add time data in two different modes.

- Mode 0

When the result exceeds 23:59:59, the resultant hour data is subtracted by 24 , turning on special internal relay M8003 (carry).

- Mode 1

Note: D8011 in source 1 is not used for execution and need not be designated. The day of week is calculated automatically from the resultant year, month, and day, and stored to D203 of destination 1.

When the result exceeds 23:59:59, the resultant hour data is subtracted by a multiple of 24 and the day data is incremented.

Note: D8011 in source 1 is not used for execution and need not be designated. The day of week is calculated automatically from the resultant year, month, and day, and stored to D203 of destination 1.

TSUB (Time Subtraction)

$\mathrm{S} 1-\mathrm{S} 2 \rightarrow \mathrm{D} 1, \mathrm{CY}$
When input is on, time data designated by source device S2 are subtracted from date/time data designated by source device S1, depending on the selected mode. The result is stored to destination device D1 and borrow (M8003).
This instruction is available on upgraded CPU modules with system program version 210 or higher.

Applicable CPU Modules

FC5A-C10R2/C/D	FC5A-C16R2/C/D	FC5A-C24R2/C/D	FC5A-D16RK1/RS1	FC5A-D32K3/S3	FC5A-D12K1E/S1E
X	X	X	X	X	X

Valid Devices

Device	Function	\mathbf{I}	\mathbf{Q}	\mathbf{M}	\mathbf{R}	\mathbf{T}	\mathbf{C}	\mathbf{D}	Constant	Repeat
Mode	Selection of S1 data range	-	-	-	-	-	-	-	0,1	-
S1 (Source 1)	Date/time data to subtract from	-	-	-	-	-	-	X	-	
S2 (Source 2)	Time data to subtract	-	-	-	-	-	-	X	-	-
D1 (Destination 1)	Destination to store results	-	-	-	-	-	-	X	-	-

For the valid device address range, see pages 6-1 and 6-2 (Basic Vol.).
When Mode 0 is selected, source devices S1 and S2 and destination device D1 occupy 3 consecutive data registers starting with the designated device. Data registers D0-D1997, D2000-D7997, and D10000-D49997 can be designated as these devices.
When Mode 1 is selected, source device S1 and destination device D1 occupy 7 consecutive data registers starting with the designated device. Data registers D0-D1993, D2000-D7993, and D10000-D49993 can be designated as these devices. Source device S2 occupies 3 consecutive data registers starting with the designated device. Data registers D0-D1997, D2000-D7997, and D10000-D49997 can be designated as source device S2.

Since the TSUB instruction is executed in each scan while input is on, a pulse input from a SOTU or SOTD instruction should be used as required.

Mode 0

When mode 0 is selected, time data (hour, minute, and second) stored in 3 data registers starting with source device S2 are subtracted from the time data (hour, minute, and second) stored in 3 data registers starting with source device S 1 . The results are stored to 3 data registers starting with destination device D1.

Hour data can be 0 through 23. Minute and second data can be 0 through 59.
When the execution result is less than 00:00:00, the result is added with 24 hours and stored to the data register designated by destination device D1, turning on special internal relay M8003 (borrow).

When any of the hour, minute, or second data is out of the valid range, a user program execution error will result, turning on special internal relay M8004 and the ERR LED on the CPU module.

Mode 1

When mode 1 is selected, time data (hour, minute, and second) stored in 3 data registers starting with source device S 2 are subtracted from the date/time data (year, month, day, day of week, hour, minute, and second) stored in 7 data registers starting with source device S1. The results are stored to 7 data registers starting with destination device D1.

Note: Device S1+3 in source 1 is not used for execution and need not be designated.

Source 1 data is compatible with leap years.
For source 1: Year data can be 0 through 99. Month data 1 through 12. Day data 1 through 31 . Hour data 0 through 23 . Minute and second data 0 through 59.
Year data 0 through 99 is processed as year 2000 through 2099.
For source 2: Hour data can be 0 through 65535. Minute and second data can be 0 through 59.
Destination 1: The day of week is calculated automatically from the resultant year, month, and day, and stored to device D1+3.
Day of week data represent: 0 (Sunday), 1 (Monday), 2 (Tuesday), 3 (Wednesday), 4 (Thursday), 5 (Friday), and 6 (Saturday)
When source 1 contains invalid day/time data, a user program execution error will result, turning on special internal relay M8004 and the ERR LED on the CPU module.
When the execution result is less than 00 year 1 month 1 day 00:00:00, a user program execution error will result, turning on special internal relay M8004 and the ERR LED on the CPU module.

Examples: TSUB

The following examples demonstrate the TSUB instruction to subtract time data in two different modes.

- Mode 0

When the result is less than 00:00:00, the resultant hour data is added with 24, turning on special internal relay M8003 (borrow).

- Mode 1

Note: D8011 in source 1 is not used for execution and need not be designated. The day of week is calculated automatically from the resultant year, month, and day, and stored to D203 of destination 1.

When the result is less than 00:00:00, the resultant hour data is added with a multiple of 24 and the day data is decremented.

Note: D8011 in source 1 is not used for execution and need not be designated. The day of week is calculated automatically from the resultant year, month, and day, and stored to D203 of destination 1.

HTOS (HMS to Sec)

Hours, minutes, seconds \rightarrow Seconds
When input is on, time data in hours, minutes, and seconds designated by source device S1 is converted into seconds. The result is stored to destination device D1.

This instruction is available on upgraded CPU modules with system program version 210 or higher.

Applicable CPU Modules

FC5A-C10R2/C/D	FC5A-C16R2/C/D	FC5A-C24R2/C/D	FC5A-D16RK1/RS1	FC5A-D32K3/S3	FC5A-D12K1E/S1E
X	X	X	X	X	X

Valid Devices

Device	Function	\mathbf{I}	\mathbf{Q}	\mathbf{M}	\mathbf{R}	\mathbf{T}	\mathbf{C}	\mathbf{D}	Constant	Repeat
S1 (Source 1)	Time data in hours, minutes, seconds	-	-	-	-	-	-	X	-	
D1 (Destination 1)	Destination to store results	-	-	-	-	-	-	X	-	

For the valid device address range, see pages 6-1 and 6-2 (Basic Vol.).
Source device S1 occupies 3 consecutive data registers starting with the designated device. Data registers D0-D1997, D2000-D7997, and D10000-D49997 can be designated as source device S1.
Destination device D1 occupies 2 consecutive data registers to store double-word data, starting with the designated device. Data registers D0-D1998, D2000-D7998, and D10000-D49998 can be designated as destination device D1.
Hour data can be 0 through 65535. Minute and second data can be 0 through 59.
When any of the hour, minute, or second data is out of the valid range, a user program execution error will result, turning on special internal relay M8004 and the ERR LED on the CPU module. The instruction is not executed.
Since the HTOS instruction is executed in each scan while input is on, a pulse input from a SOTU or SOTD instruction should be used as required.

Examples: HTOS

The following examples demonstrate the HTOS instruction to convert time data in hours, minutes, and seconds into seconds and store the results to two consecutive data registers.

STOH (Sec to HMS)

Seconds \rightarrow Hours, minutes, seconds
When input is on, time data in seconds designated by source device S1 is converted into hours, minutes, and seconds. The result is stored to destination device D1.

This instruction is available on upgraded CPU modules with system program version 210 or higher.

Applicable CPU Modules

FC5A-C10R2/C/D	FC5A-C16R2/C/D	FC5A-C24R2/C/D	FC5A-D16RK1/RS1	FC5A-D32K3/S3	FC5A-D12K1E/S1E
X	X	X	X	X	X

Valid Devices

Device	Function	I	Q	M	R	T	C	D	Constant	Repeat
S1 (Source 1)	Time data in seconds	-	-	-	-	-	-	X	X	-
D1 (Destination 1)	Destination to store results	-	-	-	-	-	-	X	-	-

For the valid device address range, see pages 6-1 and 6-2 (Basic Vol.).
Source device S1 occupies 2 consecutive data registers to store double-word data, starting with the designated device. Data registers D0-D1998, D2000-D7998, and D10000-D49998 can be designated as source device S1.
Destination device D1 occupies 3 consecutive data registers starting with the designated device. Data registers D0-D1997, D2000D7997, and D10000-D49997 can be designated as destination device D1.
Second data for source device S1 can be 0 through 4,294,967,295.
When the conversion result exceeds 65535 hours 59 minutes 59 seconds, special internal relay M8003 (carry) is turned on. For example, the conversion result is 65537 hours 0 minute 0 second, destination 1 stores 1 hour 0 minute 0 second, turning on special internal relay M8003 (carry).
Since the STOH instruction is executed in each scan while input is on, a pulse input from a SOTU or SOTD instruction should be used as required.

Examples: STOH

The following examples demonstrate the STOH instruction to convert time data in seconds into hours, minutes, and seconds and store the results to three consecutive data registers.

HOUR (Hour Meter)

$\mathrm{S} 1 \leftrightarrow \mathrm{D} 1 \rightarrow \mathrm{D} 2$
While input is on, the ON duration is measured. The measured time value (hour, minute, and second) is stored to 3 consecutive data registers designated by destination device D1 and compared with the preset value designated by source device S1.
When the D1 value reaches the S1 value, an output or internal relay designated by destination device D2 is turned on.
Two data registers starting with destination device D3 are reserved for system work area.
This instruction is available on upgraded CPU modules with system program version 210 or higher.

Applicable CPU Modules

FC5A-C10R2/C/D	FC5A-C16R2/C/D	FC5A-C24R2/C/D	FC5A-D16RK1/RS1	FC5A-D32K3/S3	FC5A-D12K1E/S1E
X	X	X	X	X	X

Valid Devices

Device	Function	I	\mathbf{Q}	\mathbf{M}	\mathbf{R}	\mathbf{T}	\mathbf{C}	\mathbf{D}	Constant	Repeat
S1 (Source 1)	Preset value	-	-	-	-	-	-	X	$0-65535$	-
D1 (Destination 1)	Measured input ON duration	-	-	-	-	-	-	X	-	
D2 (Destination 2)	Comparison output	-	X	\mathbf{A}	-	-	-	-	-	
D3 (Destination 3)	System work area	-	-	-	-	-	-	X	-	-

For the valid device address range, see pages 6-1 and 6-2 (Basic Vol.).
Source device S1 can be designated by a data register or constant.
Source device S1, when designated by a data register, and destination device D1 occupy 3 consecutive data registers starting with the designated device to store hour, minute, and second data. Data registers D0-D1997, D2000-D7997, and D10000-D49997 can be designated as these devices.

When source device S 1 is designated by a constant, the preset value can be 0 through 65535 in hours, then minutes and seconds are set to 0 .

- Special internal relays cannot be designated as destination device D2.

Destination device D3 requires 1 data register reserved for system work area.
Hour data can be 0 through 65535. Minute and second data can be 0 through 59.
When the measured input ON duration value in destination device D1 reaches the preset value designated by source device S 1 , the comparison output designated by destination device D2 turns on. As long as the input remains on, the measured input ON duration value continues to increase. When the measured input ON duration value exceeds 65535 hours 59 minutes 59 seconds, the value returns to 0 hours 0 minutes 0 seconds to repeat another measuring cycle, with the comparison output remaining on.

When any of the hour, minute, or second data of source device $S 1$ is out of the valid range, a user program execution error will result, turning on special internal relay M8004 and the ERR LED on the CPU module, but the input ON duration is measured.

When any of the hour, minute, or second data of source device S1 is changed to an invalid value after the comparison output has turned on, the comparison output is turned off. Then a user program execution error will result, turning on special internal relay M8004 and the ERR LED on the CPU module, but the input ON duration measurement is continued.

Examples: HOUR

The following examples demonstrate the HOUR instruction to measure the input ON duration value in hours, minutes, and seconds and to compare the value in two different ways.

- Source Device S1: Data Register

- Source Device S1: Constant

$|$| HOUR | S1 | D1 | D2 | D3 |
| :---: | :---: | :---: | :---: | :---: |
| | 50 | D100 | Q2 | D1900 |

D0•D1•D2 \leftrightarrow D100•D101•D102 \rightarrow Q2
While input 10 is on, the ON duration is measured. The measured time value (hour, minute, and second) is stored to data registers D100•D101•D102 designated by destination device D1 and compared with the preset value stored in data registers D0•D1•D2 designated by source device S1.
When the measured value reaches the preset value, output Q2 designated by destination device D2 is turned on.
Data registers D1900 and D1901 designated by destination device D3 are reserved for system work area.

$50 \leftrightarrow$ D100 \cdot D101 \cdot D102 \rightarrow Q2

While input IO is on, the ON duration is measured. The measured time value (hour, minute, and second) is stored to data registers D100•D101•D102 designated by destination device D1 and compared with 50 hours designated by source device S 1 .
When the measured value reaches 50 hours, output Q2 designated by destination device D2 is turned on.

Data registers D1900 and D1901 designated by destination device D3 are reserved for system work area.

21: Computer Link Communication

Introduction

When the MicroSmart CPU module is connected to a computer, operating status and I/O status can be monitored on the computer, data in the CPU module can be monitored or updated, and user programs can be downloaded and uploaded. The CPU module can also be started and stopped from the computer. A maximum of 32 CPU modules can be connected to one computer in the 1:N computer link system.
This chapter describes the 1:N computer link system. For the 1:1 computer link system, see page 4-1 (Basic Vol.). For computer link communication on port 3 through port 7 using expansion RS232C/RS485 communication modules, see page 25-1.

Computer Link System Setup (1:N Computer Link System)

To set up a 1:N communication computer link system, install the RS485 communication adapter (FC4A-PC3) to the port 2 connector on the all-in-one type CPU module, or mount the RS485 communication module (FC4A-HPC3) next to the slim type CPU module. Connect the RS232C/RS485 converter to the RS 485 terminals A, B, and SG on every CPU module using a shielded twisted pair cable as shown below. The total length of the cable for the computer link system can be extended up to 200 meters (656 feet).
Connect the RS232C port on the computer to the RS232C/RS485 converter using the RS232C cable HD9Z-C52. The RS232C cable has a D-sub 9-pin female connector for connection with a computer.
FC4A MicroSmart, OpenNet Controllers, MICRO^{3}, and $\mathrm{MICRO}^{3} \mathrm{C}$ can be connected to the same 1:N computer link system.

Note: When a USB/RS485 converter from third party is used to set up a $1: \mathrm{N}$ communication computer link system, choose the USB/ RS485 converter that does not echo the received characters.

Programming WindLDR

In the 1:1 computer link system, a computer can be connected to either port 1 or 2 on the MicroSmart CPU module. In the $1: \mathrm{N}$ computer link system, a computer must be connected to port 2 on the CPU module and every CPU module must have a unique network number 0 through 31. The Communication page in the Function Area Settings must be programmed for each station in the computer link system. If required, communication parameters can also be changed.
Since these settings relate to the user program, the user program must be downloaded to the MicroSmart after changing any of these settings.

1. From the WindLDR menu bar, select Configuration > Comm. Ports.

The Function Area Settings dialog box for Communication Ports appears.
2. In the Communication Mode pull-down list for Port 1 or 2, select Maintenance Protocol.

3. Click the Configure button. The Communication Parameters dialog box appears. Change settings, if required.

Baud Rate (bps)	$1200,2400,4800,9600,19200$, $38400,57600,115200$
Data Bits	7 or 8
Parity	Even, Odd, None
Stop Bits	1 or 2
Receive Timeout (ms)	10 to 2540 (10-ms increments) (Receive timeout is disabled when 2550 is selected.)
Network Number	0 to 31
Mode Selection Input	Any input number

Note: When a mode selection input has been designated and the mode selection input is turned on, the selected communication parameters are enabled. When communication parameters are changed without designating a mode selection input, the changed communication parameters take effect immediately when the user program is downloaded.
4. Click the OK button.

Assigning Network Numbers

When assigning a unique network number of 0 through 31 to each CPU module for the 1:N computer link network, download the user program containing the network number setting to each CPU module in the 1:1 computer link system, then the new network number is assigned to the CPU module. Make sure that there is no duplication of network numbers in a 1:N computer link network.

Communication Settings

When monitoring the MicroSmart operation or downloading a user program using WindLDR, make sure that the same communication settings are selected for the CPU module and WindLDR, so that the computer communicates with the MicroSmart in either the 1:1 or 1:N computer link system. To change the communication settings for WindLDR, access the Communication Settings dialog box from the Configure menu as shown below.
When communicating in the 1:N computer link system for monitoring or downloading, select the network number of the CPU module also in the Communication Settings dialog box.

Monitoring PLC Status

The following example describes the procedures to monitor the operating status of the MicroSmart assigned with network number 12 in a 1:N communication computer link system.

1. From the WindLDR menu bar, select Online > Set Up. The Communication Settings dialog box appears.
2. Under PLC Network Setting, click the 1:N button to select 1:N communication, and select 12 in the Network Number field.
3. From the WindLDR menu bar, select Online > Monitor > Monitor. The ladder diagram on the screen enters the monitor mode.
4. From the WindLDR menu bar, select Online > Status. The PLC Status dialog box appears.

Network Number:
Enter 12 to select a network number to communicate with.

RS232C/RS485 Converter FC2A-MD1

The RS232C/RS485 converter FC2A-MD1 is used to convert data signals between EIA RS232C and EIA RS485. This converter makes it possible to connect a host device with RS232C interface to multiple MicroSmart CPU modules using one cable.

Parts Description

Note: Connect 24V DC to POWER SUPPLY + and - terminals or connect an AC adapter with 9V DC, 350mA output to the AC adapter jack.
Note: The FC2A-MD1 contains a 220Ω termination resistor on the RS485 line, eliminating the need for an external termination resistor. To use the internal termination resistor, connect terminal T to terminal B. When the termination resistor is not needed, disconnect terminal T from terminal B.

Specifications

General Specifications

Rated Power Voltage	Power terminals: 24V DC $\pm 20 \%$ (ripple 10% maximum) DC IN adapter jack: 9V DC, 350 mA supplied from AC adapter
Current Draw	Power terminals: Approx. 40 mA at the rated voltage
Operating Temperature	0 to $60^{\circ} \mathrm{C}$
Storage Temperature	-20 to $+70^{\circ} \mathrm{C}$
Operating Humidity	45 to 85\% RH (no condensation)
Vibration Resistance	5 to $55 \mathrm{~Hz}, 60 \mathrm{~m} / \mathrm{sec}^{2}, 2$ hours each in 3 axes
Shock Resistance	$300 \mathrm{~m} / \mathrm{sec}^{2}$, 3 shocks each in 3 axes
Dielectric Strength	1500 V AC, 1 minute between live parts and dead parts
Insulation Resistance	$10 \mathrm{M} \Omega$ minimum between live parts and dead parts (500V DC megger)
Noise Resistance	Power terminals: $\pm 1 \mathrm{kV}, 1 \mu \mathrm{sec}$ (using noise simulator)
Weight	Approx. 550g

Serial Interface Specifications

Standards in Compliance	EIA standard RS232C (D-sub 25-pin female connector) EIA standard RS485 (screw terminals)
Communication Method	Half-duplex
Communication Configuration	$1: \mathrm{N}(\mathrm{N} \leq 32)$
Communication Cable	Shielded twisted-pair cable
Communication Baud Rate	9600 bps (fixed)
Slave Stations	32 slave stations maximum (RS485 line)
Maximum Cable Length	RS232C: 15m (49.2 ft.) RS485: Total 200m (656 ft.)

RS232C Connector Pinouts

D-sub 25-pin Female Connector

Note: Terminals 4 and 5 are connected together internally.

Pin No.		Description
$\mathbf{1}$	GND	Frame Ground
$\mathbf{2}$	TXD	Transmit Data
$\mathbf{3}$	RXD	Receive Data
$\mathbf{4}$	(RTS)	Unused
$\mathbf{5}$	(CTS)	Unused
$\mathbf{6}$	(NC)	Unused
$\mathbf{7}$	GND	Signal Ground
$\mathbf{8 - 2 5}$	(NC)	Unused

Dimensions

Note: When mounting the RS232C/RS485 converter on a panel surface, remove the rubber feet; then attach the supplied mounting brackets on the bottom of the converter using screws.

RS232C Cable HD9Z-C52

Connector for RS232C/RS485 Converter

D-sub 25-pin male connector

Connector for Computer

Pin No.	Symbol
$\mathbf{1}$	DCD
2	RXD
3	TXD
4	DTR
5	GND
6	DSR
7	RTS
8	CTS
9	RI

D-sub 9-pin female connector

AC Adapter

The RS232C/RS485 converter is powered by a 24 V DC source or an AC adapter with $9 \mathrm{~V} D C, 350 \mathrm{~mA}$ output capacity.

Polarity

22: Modem Mode

Introduction

This chapter describes the modem mode designed for communication between the MicroSmart and another MicroSmart or any data terminal equipment through telephone lines. Using the modem mode, the MicroSmart can initialize a modem, dial a telephone number, send an AT command, enable the answer mode to wait for an incoming call, and disconnect the telephone line. These operations can be performed simply by turning on a start internal relay dedicated to each operation.

Caution

- The modem mode provides for a simple modem control function so that the MicroSmart can initialize a modem, dial a destination telephone number, or answer an incoming call. The performance of the modem communication using the modem mode depends on the modem functions and telephone line situations. The modem mode does not prevent intrusion or malfunctions of other systems. For practical applications, confirm the communication function using the actual system setup and include safety provisions.
- While communicating through modems, the telephone line may be disconnected unexpectedly or receive data errors may occur. Provisions against such errors must be included in the user program.

System Setup

To connect a modem to the MicroSmart, install the RS232C communication adapter (FC4A-PC1) to the port 2 connector on the all-in-one type CPU module, or mount the RS232C communication module (FC4A-HPC1) next to the slim type CPU module, and use the modem cable 1C (FC2A-KM1C). To enable the modem mode, select Modem Protocol for Port 2 using WindLDR (Configuration > Comm. Port).

Mini DIN Connector Pinouts

Description	Pin	Pin	Description
Shield	Cover	1	FG Frame Ground
RTS Request to Send	1	2	TXD Transmit Data
DTR Data Terminal Ready	2	3	RXD Receive Data
TXD Transmit Data	3	4	RTS Request to Send
RXD Receive Data	4	5	NC No Connection
DSR Data Set Ready	5	6	NC No Connection
SG Signal Ground	6	7	SG Signal Ground
SG Signal Ground	7	8	DCD Data Carrier Detect
NC No Connection	8	20	DTR Data Terminal Ready

Caution

- Do not connect the NC (no connection) pin to any line; otherwise, the MicroSmart or modem may be damaged.
- Modem cables for Apple Macintosh computers cannot be used for the MicroSmart.
- Do not connect the cable to the port 1 or port 2 (RS485); otherwise, the MicroSmart or modem may be damaged.

Applicable Modems

Any Hayes compatible modem can be used. Modems with a communications rate of 9600 bps or more between modems are recommended. Use modems of the same make and model at both ends of the communication line.

Special Internal Relays for Modem Mode

Special internal relays M8050-M8077 are allocated to the modem mode. M8050-M8056 are used to send an AT command or disconnect the telephone line. M8060-M8066 and M8070-M8076 turn on to indicate the results of the command. M8057, M8067, and M8077 are used to indicate the status of the modem mode.

All completion and failure internal relays are turned off when another start internal relay is turned on.

Start and Result Internal Relays

Mode	Command	Start IR	Completion IR	Failure IR	Data Register
Originate Mode	Initialization String	M8050	M8060	M8070	D8145-D8169
	ATZ	M8051	M8061	M8071	-
	Dialing	M8052	M8062	M8072	D8170-D8199
Disconnect Mode	Disconnect Line	M8053	M8063	M8073	-
AT General Command Mode	AT Command	M8054	M8064	M8074	D8130-D8144
Answer Mode	Initialization String	M8055	M8065	M8075	D8145-D8169
	ATZ	M8056	M8066	M8076	-

When one of start internal relays M8050-M8056 is turned on, a corresponding command is executed once. To repeat the command, reset the start internal relay and turn the internal relay on again.
Completion or failure of a command is determined as described below:
Completion: The command is transmitted repeatedly as many as the retry cycles specified in data register D8109. When the command is completed successfully, the completion IR is turned on and the command is not executed for the remaining cycles.
Failure: The command is transmitted repeatedly but failed in all trials as many as the retry cycles specified in data register D8109.

Status Internal Relays

Status IR	Status	Description
M8057	AT Command Execution	ON: AT command is in execution (start IR is on) OFF: AT command is not in execution (completion or failure IR is on)
M8067	Operational State	ON: Command mode OFF: Online mode
M8077	Line Connection	ON: Telephone line connected (Note) OFF: Telephone line disconnected

Note: While M8077 (line connection) is off, the MicroSmart cannot send and receive maintenance communication and user communication through port 2 . When M8077 is turned on, maintenance communication or user communication is enabled depending on the value stored in data register D8103 (online mode protocol selection).

Special Data Registers for Modem Mode

Special data registers D8103 and D8109-D8199 are allocated to the modem mode. When the MicroSmart starts to run, D8109 and D8110 store the default values, and D8145-D8169 store the default initialization string.

Data Register	Stored Data	Description
D8103	Online Mode Protocol Selection	The D8103 value selects the protocol for the RS232C port 2 after telephone line is connected.
D8109	Retry Cycles (default = 3)	The D8109 value selects how many retries will be made until the operation initiated by a start internal relay M8050-M8056 is completed. 0: \quad No retry 1-65535: Executes a specified number of retries
D8110	Retry Interval (default = 90 sec)	The D8110 value specifies the interval to start a retry of dialing when a dialing fails with the retry cycles set to a value more than 1. (Other start commands are repeated continuously as many as the retry cycles.) Valid value: 0 to 65535 (seconds) If a telephone line is not connected within the retry interval, the MicroSmart starts a retry. Consequently, if the retry interval is set to a too small value, the telephone line can not be connected correctly.
D8111	Modem Mode Status	Modem mode status is stored (see page 22-7). When not in the modem mode, D8111 stores 0.
D8115-D8129	AT Command Result Code	AT command result codes returned from modem are stored. When the result code exceeds 30 bytes, first 30 bytes are stored.
D8130-D8144	AT Command String	AT command string for the AT general command mode is stored. Enter an AT command string to these data registers to send by turning on M8054 (AT command start internal relay). "AT" and LF (OAh) are appended automatically.
D8145-D8169	Initialization String	Initialization string for the originate and answer modes is stored. To change the initialization string, enter a new value to these data registers. The new value is sent by turning on M8050 or M8055. "AT" and LF (OAh) are appended automatically.
D8170-D8199	Telephone Number	Telephone number for dialing in the originate mode is stored. "ATD" and LF (OAh) are appended automatically.

Originate Mode

The originate mode is used to send an initialization string to the modem, issue the ATZ command to reset the modem, and dial the telephone number. To execute a command, turn on one of start internal relays M8050-M8052. If two or more start internal relays are turned on simultaneously, an error will result and error code 61 is stored in modem mode status data register D8111 (see page 22-7). When a start internal relay is turned on, a corresponding sequence of commands is executed once as described below. When the start command fails, the same command is repeated as many as the retry cycles specified by D8109.

M8050: Send an initialization string, send the ATZ command, and dial the telephone number
M8051: Send the ATZ command and dial the telephone number
M8052: Dial the telephone number

Initialization String in Originate Mode

When the modem mode is enabled as described on page 22-1 and the MicroSmart is started to run, the default initialization string is stored to data registers D8145-D8169 at the END processing of the first scan. To send the initialization string from the MicroSmart to the modem, turn M8050 on; then the ATZ command is issued and the telephone number is dialed successively.

Default Initialization String: \quad ATE0Q0V1\&D2\&C1\V0X4\&K3\AO 2 N5SO $=2 \& W \mathrm{CR}$ LF

AT and \lfloor LF are appended at the beginning and end of the initialization string automatically by the system program and are not stored in data registers.

$$
\begin{aligned}
& \text { DR } 8145 \text { 8146 } 814781488149815081518152815381548155 \\
& \text { AT } \\
& \text { AO }
\end{aligned} \text { QO }
$$

Depending on your modem and telephone line, the initialization string may have to be modified. Consult the manual for your modem.

Changes can be made by entering required values to data registers D8145-D8169. Store two characters in one data register; the first character at the upper byte and the second character at the lower byte in the data register. AT and $\boxed{L F}$ need not be stored in data registers. Use the MOV (move) instructions on WindLDR to set the initialization string characters and ASCII value ODh for CR at the end. Program the MOV instructions to replace the default values in D8145-D8169 stored in the first scan and execute the MOV instructions in a subsequent scan. For essential commands which must be included in the initialization string, see page 22-8. After the new values are stored, turn on M8050 to send the new initialization string to the modem.

When the initialization string has been sent successfully, internal relay M8060 is turned on. If the initialization string fails, internal relay M8070 is turned on. When the subsequent commands of ATZ and dialing are also completed successfully, M8061 and M8062 will also be turned on.

The default initialization string or the modified initialization string stored in D8145-D8169 is also used for the initialization in the answer mode.

ATZ (Resetting the Modem) in Originate Mode

The default initialization string specifies to be stored in the non-volatile memory of the modem, using the \&W command. The initialization string is restored when the modem is powered up or when the ATZ command is issued. The MicroSmart sends the ATZ command to the modem, following the initialization string when M8050 is turned on. The ATZ command can also be issued separately by turning M8051 on, followed by the dial command to be executed automatically.

ATZ Command: ATZCR LF

When the ATZ command has been completed successfully, internal relay M8061 is turned on. If the ATZ command fails, internal relay M8071 is turned on. When the subsequent dialing is also completed successfully, M8062 will also be turned on.

If the initialization string has been stored in the non-volatile memory of the modem, M8050 may be skipped. Start with M8051 to send the ATZ command.

Dialing the Telephone Number

Data registers D8170-D8199 are allocated to the telephone number. Before turning on one of the start internal relays M8050-M8052 for the originate mode, store the telephone number in data registers starting with D8170. One data register stores two characters: the first character at the upper byte and the second character at the lower byte in the data register. Since 30 data registers are allocated to the telephone number, up to 60 characters can be stored, as many as the modem capacity allows. Use the MOV (move) instructions on WindLDR to set the telephone number and execute the MOV instructions before turning on start internal relays M8050-M8052.

Example of Dial Command: \quad ATD1234 CR LF
ATD and LF are appended at the beginning and end of the dial command automatically by the system program and need not be stored in data registers. To program the telephone number of the example above, store the telephone number and ASCII value ODh for CR to data registers starting with D8170. It is also possible to store character T for touch-tone phone or P for pulse or rotary phone.

D8170	3132h	$31 \mathrm{~h}=$ " 1 "	$32 \mathrm{~h}=$ " 2 "	
D8171	3334h	$33 \mathrm{~h}=$ " 3 "	$34 \mathrm{~h}=$ " 4 "	
D8172	0D00h	$0 \mathrm{Dh}=\mathrm{CR}$	All characters subsequent to CR	are ignored.

As described above, when start internal relay M8050 is turned on, the initialization string is sent, followed by the ATZ command and the dial command. When start internal relay M8051 is turned on, the ATZ command is sent, followed by the dial command. The dial command can also be sent separately by turning on start internal relay M8052.

If retry cycles are set to data register D8109, the dial command is repeated at retry intervals specified by D8110 (default 90 seconds) as many as the specified retry cycles (default 3 cycles) until the telephone line is connected.

When the dial command has been completed successfully, internal relay M8062 is turned on. If the dial command fails, internal relay M8072 is turned on.

The dial command is determined successful when the DCD signal is turned on.
Note: When the MicroSmart is powered down while the telephone line is connected, the telephone line is disconnected because the DTR signal is turned off. This method should not be used for disconnecting the telephone line. Always use M8053 to disconnect the telephone line as described below.

RS232C Port Communication Protocol

Before the telephone line is connected in the modem mode after powerup, the RS232C port 2 can only send out an AT command by turning on a start internal relay M8050-M8056. The communication protocol for the RS232C port 2 after the telephone line is connected is selected by the value stored in data register D8103.

D8103 Value	RS232C Port 2 Communication Protocol in the Online Mode
$\mathbf{0}$ (other than 1)	Maintenance protocol
$\mathbf{1}$	User protocol

When the telephone line is disconnected, the RS232C port 2 restores the state as before the telephone line was connected, whether D8103 is set to 0 or 1 .

When using a TXD or RXD instruction in the user communication mode while the telephone line is connected, insert internal relay M8077 (line connection) as an input condition for the TXD or RXD instruction. After the telephone line is connected, make sure of an approximately 1-second interval before executing the TXD or RXD instruction until the telephone line connection stabilizes.

Note: When the MicroSmart is stopped while the telephone line is connected, the RS232C port 2 protocol changes to the maintenance protocol even if D8103 is set to 1 (user protocol in the online mode); then the telephone line remains connected. When the MicroSmart is restarted, the user protocol is enabled again.

Disconnect Mode

The disconnect mode includes only one command to disconnect the telephone line. To disconnect the telephone line, turn on internal relay M8053. The telephone line is disconnected by turning off the DTR signal since the initialization string includes the \&D2 command.

While a modem command is executed, another command cannot be executed. If two or more start internal relays are turned on simultaneously, an error will result and error code 61 is stored in modem mode status data register D8111 (see page 22-7).

When the disconnect command has been completed successfully, internal relay M8063 is turned on. If the disconnect command fails, internal relay M8073 is turned on.
The disconnect command is determined successful when the DCD signal is turned off.
After the telephone line is disconnected, the RS232C port 2 restores the state as before the telephone line was connected whether D8103 is set to 0 or 1 so that the RS232C port 2 can be controlled by turning on a start internal relay M8050M8056.

AT General Command Mode

Data registers D8130-D8144 are allocated to the AT command string. Before turning on start internal relay M8054 for the AT general command mode, store an AT command string in data registers starting with D8130. One data register stores two characters: the first character at the upper byte and the second character at the lower byte in the data register. Use the MOV (move) instructions on WindLDR to set the AT command string and execute the MOV instructions before turning M8054 on.

Example of AT Command: ATE0QOV1 CR LF
AT and LLF are appended at the beginning and end of the AT general command string automatically by the system program and need not be stored in data registers. To program the AT command string of the example above, store the command characters and ASCII value ODh for CR to data registers starting with D8130.

D8130	4530h	$45 h=" E "$	$30 \mathrm{~h}=$ " 0 "
D8131	5130h	$51 \mathrm{~h}=$ "Q"	$30 \mathrm{~h}=$ " 0 "
D8132	5631h	$56 \mathrm{~h}=$ "V"	$31 \mathrm{~h}=$ " 1 "
D8133	0D00h	$0 \mathrm{Dh}=\mathrm{CR}$	All characters subsequent to $C R$

When the AT general command has been completed successfully, internal relay M8064 is turned on. If the AT general command fails, internal relay M8074 is turned on.

The AT general command is determined successful when result code $C R$ LF $O K L R$ returned from the modem is received.

Answer Mode

The answer mode is used to send an initialization string to the modem and to issue the ATZ command to reset the modem. To execute a command, turn on one of start internal relays M8055 or M8056. If two or more start internal relays are turned on simultaneously, an error will result and error code 61 is stored in modem mode status data register D8111 (see page 22-7). When a start internal relay is turned on, a corresponding sequence of commands is executed once as described below.

M8055: Send initialization string and send the ATZ command
M8056: Send the ATZ command

Initialization String in Answer Mode

When the modem mode is enabled as described on page 22-1 and the MicroSmart is started to run, the default initialization string is stored to data registers D8145-D8169 at the END processing of the first scan. To send the initialization string from the data registers to the modem, turn M8055 on; then the ATZ command is issued subsequently.

Default Initialization String:ATE0Q0V1\&D2\&C1\V0X4\&K3\AO\N5SO=2\&W CR LF
As described in the Originate Mode, the initialization string can be modified to match your modem. For details of modifying the initialization string, see page 22-3.

When the initialization string has been sent successfully, internal relay M8065 is turned on. If the initialization string fails, internal relay M8075 is turned on. When the subsequent ATZ command is also completed successfully, M8066 will also be turned on.

ATZ (Resetting the Modem) in Answer Mode

The default initialization string specifies to be stored in the non-volatile memory of the modem, using the \&W command. The initialization string is restored when the modem is powered up or when the ATZ command is issued. The MicroSmart sends the ATZ command to the modem following the initialization string when M8055 is turned on. The ATZ command can also be issued separately by turning M8056 on.

ATZ Command: ATZCR LF

When the ATZ command has been completed successfully, internal relay M8066 is turned on. If the ATZ command fails, internal relay M8076 is turned on.

If the initialization string has been stored in the non-volatile memory of the modem, M8055 may be skipped. Start with M8056 to send the ATZ command.

Modem Mode Status Data Register

When the modem mode is enabled, data register D8111 stores a modem mode status or error code.

D8111 Value	Status	Description
0	Not in the modem mode	Modem mode is not enabled.
10	Ready for connecting line	Start internal relays except for disconnecting line can be turned on.
20	Sending initialization string (originate mode)	A start internal relay is in operation in the first try or subsequent retrial.
21	Sending ATZ (originate mode)	
22	Dialing	
23	Disconnecting line	
24	Sending AT command	
25	Sending initialization string (answer mode)	
26	Sending ATZ (answer mode)	
30	Waiting for resending initialization string (originate mode)	The command started by a start internal relay was not completed and is waiting for retrial.
31	Waiting for resending ATZ (originate mode)	
32	Waiting for re-dialing	
33	Waiting for re-disconnecting line	
34	Waiting for resending AT command	
35	Waiting for resending initialization string (answer mode)	
36	Waiting for resending ATZ (answer mode)	
40	Line connected	Telephone line is connected. Only M8053 (disconnect line) can be turned on.
50	AT command completed successfully	Command started by M8054-M8056 is completed successfully.
60	AT command program error	Invalid character is included in the initialization string, dial number, or AT command string. Correct the program to include ODh in the AT command.
61	Simultaneous start of commands	Two or more start internal relays are on. Correct the user program so that only one start internal relay goes on at a time.
62	Invalid command in online mode	A start IR other than M8053 (disconnect line) is turned on while the telephone line is connected. Correct the program so that only the disconnect command is sent while the line is connected.
63	AT command execution error	Command failed in the first and all retry cycles.

Initialization String Commands

The built-in initialization string (see page 22-3) include the commands shown below. For details of modem commands, see the user's manual for your modem. When you make an optional initialization string, modify the initialization string to match your modem.

EO	Characters NOT echoed. The modem mode of the MicroSmart operates without echo back. Without the EO command, the MicroSmart misunderstands an echo for a result code. An error will be caused although a command is executed correctly. This command must be included in the initialization string.
Q0	Result codes displayed. The modem mode of the MicroSmart is configured to use result codes. Without the Q0 command, a timeout error will be caused although a command is executed correctly. This command must be included in the initialization string.
V1	Word result code. The modem mode of the MicroSmart is configured to use word result codes. Without the V1 command, result codes are regarded as invalid and a timeout error will be caused although a command is executed correctly. This command must be included in the initialization string.
\&D2	Hang up and disable auto-answer on DTR detection. When the DTR signal turns off, the telephone line is disconnected. The MicroSmart uses this function to disconnect the telephone line. This command must be included in the initialization string.
\&C1	DCD ON with carrier from remote modem. DCD tracks the state of the data carrier from the remote modem. An ON condition of DCD indicates the presence of a carrier. This command must be included in the initialization string.
\VO	MNP result codes disabled. Conventional result codes are used and reliable link result codes are not used.
X4	Enables dial tone and busy detection.
\&K3	Enables hardware flow control. The software flow control (XON/XOFF) cannot be used for the MicroSmart modem mode. This command must be included in the initialization string.
\A0	Set MNP maximum block size to 64 bytes.
\N5	MNP auto-reliable mode
SO=2	Ring to answer ON. Specifies the ring on which the modem will pick up the telephone line. $\mathrm{SO}=2$ specifies that the modem answers an incoming call when detecting 2 ring calls. $\mathrm{SO}=0$ disables the auto-answer function.
\&W	Write active profile. The current configuration profile is saved to a non-volatile memory of the modem.

Preparations for Using Modem

Before using a modem, read the user's manual for your modem.
The required initialization string depends on the model and make of the modem. When the MicroSmart starts to run the user program, the default modem initialization strings is stored to D8145-D8169. See page 22-3.

Default Initialization String: ATE0Q0V1\&D2\&C1\V0X4\&K3\AO\N5SO=2\&WCR LF

Programming Data Registers and Internal Relays

To enable the modem mode and communicate through the telephone line, the following settings are needed.

1. If the default initialization string does not match your modem, program a proper initialization string and enter the ASCII values to data registers starting with D8145 (initialization string). To send out the new initialization string, turn on internal relay M8050 (initialization string start IR) after the new values have been stored to the data registers.
2. Program to move 0 or 1 to data register D8103 (online mode protocol selection) to select maintenance protocol or user protocol for the RS232C port 2 after telephone line is connected.
3. Program the destination telephone number if dialing is required. Enter the ASCII values of the telephone number to data registers starting with D8170 (telephone number). Store two characters each in one data register. Enter ODh at the end of the telephone number. See page 22-4.
4. If you want to change the default value of 3 retry cycles, program to move a required value to data register D8109.
5. Include internal relays M8050-M8077 in the user program to control the modem communication as required.

Setting Up the CPU Module

1. Install the RS232C communication adapter (FC4A-PC1) to the port 2 connector on the all-in-one type CPU module.

When using any slim type CPU module, mount the RS232C communication module (FC4A-HPC1) next to the slim type CPU module, and use the port 2 on the RS232C communication module.

When using the HMI base module with any slim type CPU module, install the RS232C communication adapter (FC4A-PC1) to the port 2 connector on the HMI base module.
2. Connect the MicroSmart CPU module port 2 to a modem using the modem cable 1 C (FC2A-KM1C) as shown on page 22-1.

Programming WindLDR

The Communication page in the Function Area Settings must be programmed to enable the modem communication for port 2. If required, communication parameters of the CPU module port 2 can also be changed.

Since these settings relate to the user program, the user program must be downloaded to the MicroSmart after changing any of these settings.

1. From the WindLDR menu bar, select Configuration > Comm Ports.

The Function Area Settings dialog box for Communication Ports appears.
2. In the Communication Mode pull-down list for Port 2, select Modem Protocol.

3. Click the Configure button. The Communication Parameters dialog box appears. Change settings, if required.

The default communication parameters shown below are recommended.

Baud rate	9600 bps
Start bit	1
Data bits	7
Parity	Even
Stop bit	1
Total	10 bits

Only when the modem connected on the communication line uses different communication parameters than the default values of the MicroSmart, set the matching communication parameters. Since the total of modem communication parameters is 10 bits, set the value to a total of 10 bits.
4. Click the OK button.

Operating Procedure for Modem Mode

1. After completing the user program including the Function Area Settings, download the user program to the MicroSmart from a computer running WindLDR.
2. Start the MicroSmart to run the user program.
3. Turn on start internal relay M8050 or M8055 to initialize the modem.

When originating the modem communication, turn on M8050 to send the initialization string, the ATZ command, and the dial command. If the initialization string has been stored in the non-volatile memory of the modem, turn on M8051 to start with the ATZ command followed by the dial command.

When answering an incoming call, turn on M8055 to send the initialization string and the ATZ command. If the initialization string has been stored in the non-volatile memory of the modem, turn on M8056 to send the ATZ command only.
4. Transmit or receive communication through the modem.
5. Turn on start internal relay M8053 to disconnect the telephone line.

Sample Program for Modem Originate Mode

This program demonstrates a user program for the modem originate mode to move values to data registers assigned to the modem mode, initialize the modem, dial the telephone number, and disconnect the telephone line. While the telephone line is connected, user communication instruction TXD2 sends a character string "Connect."

M8120 is the initialize pulse special internal relay.
The MOV instruction stores 1 to D8103 to enable user protocol after telephone line is connected.

MOV instructions set a dial command ATD1234 CR LF.
$" 12$ " $(3132 \mathrm{~h}=12594) \rightarrow$ D8170
" 34 " $(3334 \mathrm{~h}=13108) \rightarrow$ D8171
"CR" (ODOOh = 3328) \rightarrow D8172 to enter CR at the end of the telephone number.

When input 10 is turned on, M 8050 (initialization string) is turned on to send the initialization string, ATZ, and dial command to the modem.

M8077 (line connection status) is on while telephone line is connected.

When I1 is turned on, TXD2 sends seven characters "Connect." See the WindLDR dialog box shown below.

When input I2 is turned on, M8053 (disconnect line) is turned on to disconnect the telephone line.

The TXD2 instruction in the sample program for the modem originate mode is programmed using WindLDR with parameters shown below:

TXD (Transmit)								$? x$	
Type	S1 "Connect"			Tag Name: Device Address: Comment:	D1		D2		
- TXD				M0000	\ldots	D0000	\ldots		
(-) RXD				M0000		00000			
Port No:									
Port 2									
	Insert	Delete	Edit						
							OK		Cancel

Sample Program for Modem Answer Mode

This program demonstrates a user program for the modem answer mode to move a value to a data register assigned to the modem mode and initialize the modem. While the telephone line is connected, user communication instruction RXD2 is executed to receive an incoming communication.

M8120 is the initialize pulse special internal relay.
When the MicroSmart starts to run, M8055 is turned on to send the initialization string for the modem answer mode.

The MOV instruction stores 1 to D8103 to enable user protocol after telephone line is connected.

M8077 (line connection status) is on while telephone line is connected. RXD2 receives incoming communication and stores received data to data registers starting with D10.

The RXD2 instruction is programmed using WindLDR with parameters shown below:
Source S1: Data register D10, No conversion, 2 digits, Repeat 10

Troubleshooting in Modem Communication

When a start internal relay is turned on, the data of D8111 (modem mode status) changes, but the modem does not work.
Cause: A wrong cable is used or wiring is incorrect.
Solution: Use the modem cable 1C (FC2A-KM1C).
The DTR or ER indicator on the modem does not turn on.
Cause: A wrong cable is used or wiring is incorrect.
Solution: Use the modem cable 1C (FC2A-KM1C).
When a start internal relay is turned on, the data of D8111 (modem mode status) does not change.
Cause: Modem protocol is not selected for port 2.
Solution: Select Modem Protocol for Port 2 using WindLDR (Configure > Function Area Settings > Communication) and download the user program to the CPU module.

When an initialization string is sent, a failure occurs, but sending ATZ completes successfully.
Cause: The initialization string is not valid for the modem.
Solution: Refer to the user's manual for the modem and correct the initialization string.
When a dial command is sent, a result code "NO DIALTONE" is returned and the telephone line is not connected.
Cause 1: The modular cable is not connected.
Solution 1: Connect the modular cable to the modem.
Cause 2: The modem is used in a PBX environment.
Solution 2: Add X0 or X3 to the initialization string stored in data registers D8145-D8169, and try initialization again.

Dialing completes successfully, but the telephone line is disconnected in a short period of time.
Cause 1: The modem settings at the both ends of the line are different.
Solution 1: Make the same settings for the modems at the both ends.
Cause 2: The model of the modems at the both ends of the line is different.
Solution 2: Use the same modems at the both ends.
Cause 3: The quality of the telephone line is low.
Solution 3: Decrease the baud rate of the MicroSmart to lower than 9600 bps.

23: Modbus tCP Communication

Introduction

This chapter describes the Modbus TCP master (client) and slave (server) communication function of the FC5A MicroSmart CPU module.

All FC5A MicroSmart CPU modules with system program ver. 210 or higher can use the Modbus TCP communication to send and receive data with Modbus devices through the Ethernet line.

Modbus TCP Communication General Information

When connected with the web server module (FC4A-SX5ES1E), the FC5A MicroSmart CPU module can be used as a master (client) or a slave (server) of the Modbus TCP communication.

Using the Modbus TCP master communication, the CPU module can change or monitor data in Modbus server devises through communication port 2.

In the Modbus TCP slave communication, a Modbus master device can change or monitor device values in the MicroSmart CPU module through communication port 1 or port 2.

Modbus TCP master communication functions and configuration are described on page 23-2. Modbus TCP slave communication functions and configuration are described on page 23-5.
To use the Modbus TCP communication, FC5A MicroSmart CPU modules with system program ver. 210 or higher and WindLDR ver. 5.3 or higher are required. The system program version can be confirmed using WindLDR. See page 13-1 (Basic Vol.).

When the CPU module system program version is lower than 210, you can download the latest system program using WindLDR ver. 5.1 or higher. See page A-9 (Basic Vol.).

Applicable CPU Modules	All FC5A CPU modules
System Program Version	210 or higher
WindLDR Version	5.3 or higher

Modbus TCP Master Communication

Basic functions and specifications of the Modbus TCP master communication are the same as those of the Modbus master communication, except that only one slave can be connected.

WindLDR Function Area Settings are used to configure communication settings for the Modbus TCP master and to create requests to be sent to the Modbus TCP slave. Modbus TCP master communication is processed in asynchronism with user program execution. Requests are sent through the web server module (FC4A-SX5ES1E) to the Modbus TCP slave.

Note: Only one Modbus TCP slave can be connected to one Modbus TCP master.

Modbus TCP Master Communication Specifications

Mode	Modbus TCP Master Communication
Applicable Communication Port	Port 2
Baud Rate $^{* 1}$	$9600,19200,38400,57600$ bps
Data Bits $^{* 1}$	8 bits (fixed)
Parity $^{* 1}$	Even, Odd, None
Stop bits $^{* 1}$	1,2 bits
Slave Number	1 to 247 (0: broadcast slave number)
Maximum Number of Slaves	1
Receive Timeout ${ }^{* 2}$	10 to 2550 ms (in increments of 10 ms$)$
Transmission Wait Time ${ }^{* 3}$	1 to 5000 ms (in increments of 1 ms)
Retry Cycles	1 to 10
*1: Select the same values set for the web server module (FC4A-SX5ES1E).	
*2: Specifies the maximum period of time before receiving a response frame from a slave.	
*3: D8054 is a special data register for Modbus communication transmission wait time ($\times 1$ ms). Using D8054 can delay transmission	
from the MicroSmart.	

Programming Modbus TCP Master Communication Using WindLDR

Modbus TCP master communication settings and request tables for Modbus slave stations can be programmed using the WindLDR Function Area Settings. Since these settings relate to the user program, the user program must be downloaded to the MicroSmart after changing any of these settings.

1. From the WindLDR menu bar, select Configuration > Comm. Ports.

The Function Area Settings dialog box for Communication Ports appears.
2. In the Communication Mode pull-down list for Port 2, select Modbus TCP Master (Client).

The Modbus TCP Master Request Table (Port 2) appears.
The Modbus TCP Master Request Table (Port 2) can also be opened by clicking the Configure button for Port 2.

3. Click the Communication Settings button.

The Communication Settings dialog box appears. Change settings, if required.

Communication Settings		
Baud Rate (bps):	9600	
Parity:	Even	\bullet
Stop Bit:	1	\checkmark
Retry Cycle:	1	$\stackrel{+}{\square}$
Receive Timeout (10 ms):	50	$\stackrel{\square}{\sim}$
	OK	

Baud Rate (bps) *	$9600,19200,38400,57600$
Parity ${ }^{*}$	Even, Odd, None
Stop Bits *	1 or 2
Retry Cycle	1 to 10
Receive Timeout	1 to $255(\times 10 \mathrm{~ms})$
$*:$Select the same values set for the web server module (FC4A- SX5ES1E).	

4. Click the OK button to return to the Modbus TCP Master Request Table (Port 2). Designate requests under the Function Code. A maximum of 2040 requests can be entered in one request table.

Choose to use Request Execution Device and Error Status data registers. When using Request Execution Device and Error Status data registers, enter the first number of the devices.

Notes for Editing the Request Table

Request execution devices and error status data registers are allocated in the order of request numbers. When deleting a request or changing the order of requests, the relationship of the request to the request execution devices and error status data register is changed. If the internal relay or data register is used in the user program, the device addresses must be changed accordingly. After completing the changes, download the user program again.
5. When editing the Modbus TCP Master Request Table (Port 2) is complete, click the OK button to save changes.
6. Download the user program to the CPU module.

Now, programming for the Modbus TCP master is complete. Parameters and valid values are the same as Modbus master communication. For details, see pages 12-7 through 12-9 (Basic Vol.).

Modbus TCP Slave Communication

WindLDR Function Area Settings are used to configure communication settings for the Modbus TCP slave communication through communication port 1 or 2 of the MicroSmart CPU module. In the Modbus TCP communication, when the Modbus TCP slave receives a request from the Modbus TCP master, the Modbus TCP slave reads or writes devices according to the request. The request is processed at the END processing of the user program. The web server module (FC4ASX5ES1E) is used to set up a Modbus TCP slave.

Note: Only one Modbus TCP slave can be connected to one Modbus TCP master.

Modbus TCP Slave Communication Specifications

Mode	Modbus TCP Slave (Server) Communication	
Applicable Communication Port	Port 1	Port 2
Baud Rate ${ }^{* 1}$	9600, 19200, 38400, 57600 bps	
Data Bits ${ }^{*}$	8 bits (fixed)	
Parity ${ }^{* 1}$	Odd, even, none	
Stop bits ${ }^{* 1}$	1,2 bits	
Slave Number	1 to 247	
Response Time	1.5 ms	1 to 5000 ms (in increments of 1 ms$)^{* 2}$
Receive Timeout ${ }^{* 3}$	10 to 2550 ms (in increments of 10 ms)	
Special Internal Relay	-	M8005: Communication error M8080: Communication completion relay
Special Data Register	-	D8053: Error code D8054: Transmission wait time (in increments of 1 ms)
Applicable Function Code	01 Read Coil Status 02 Read Input Status 03 Read Holding Registers 04 Read Input Registers 05 Force Single Coil 06 Preset Single Register 15 Force Multiple Coils 16 Preset Multiple Registers	

*1: Select the values from WindLDR > Function Area Settings > Communication.
*2: Special data register D8054 for Modbus communication transmission wait time ($\times 1 \mathrm{~ms}$) is used to set the response time. 0 designates 1 ms , and 5000 or more designates 5000 ms .
*3: When timeout occurs, the MicroSmart discards the received data and waits for the first frame of the next valid communication.

Communication Completion and Communication Error

Modbus TCP communication finishes when a read or write process is completed successfully or when a communication error occurs. Immediately after a request communication has been completed, Modbus communication completion relay M8080 turns on for 1 scan time. When a communication error occurs, the error code is stored to special data register D8053. The data in D8053 is valid only for the 1 scan time when M8080 is on.

When a communication error occurs, communication error special internal relay M8005 also turns on for 1 scan time immediately after the error.

Programming Modbus TCP Slave Communication Using WindLDR

Modbus TCP slave (server) communication settings can be programmed using the WindLDR Function Area Settings. Since these settings relate to the user program, the user program must be downloaded to the MicroSmart after changing any of these settings.

1. From the WindLDR menu bar, select Configuration > Comm. Ports.

The Function Area Settings dialog box for Communication Ports appears.
2. In the Communication Mode pull-down list for Port 1 or Port 2, select Modbus TCP Slave (Server).

The Modbus TCP Slave dialog box appears.
The Modbus TCP Slave dialog box can also be opened by clicking the Configure button for Port 1 or Port 2.
3. Change the communication settings, if required.

mODBUS/TCP Slave (Server) (Port2)			
Baud Rate (bps):		9600	\square
Data Bits:			
Parity:		Even	\checkmark
Stop Bits:			\square
Receive Timeout (ms):		500	$\stackrel{\square}{*}$
Slave Number:			
OK	Cancel	Defau	

Baud Rate (bps)	$9600,19200,38400,57600$
Parity	Even, Odd, None
Stop Bits	1 or 2
Receive Timeout	1 to 5000 (ms)
Slave Number	1 to 247

4. Click the $\mathbf{O K}$ button to return to the Communication tab page.
5. Click the $\mathbf{O K}$ button to save changes.
6. Download the user program to the CPU module.

Now, programming for the Modbus TCP slave is complete. Parameters and valid values are the same as Modbus slave communication. For details, see pages 12-15 through 12-22 (Basic Vol.).

Programming the Web Server Module (FC4A-SX5ES1E)

For details about the web server module, see the web server module user's manual (FC9Y-B919).

1. Set the function selector switch on the web server module to USER.
2. Select the same parameters values set in the Communication Settings.

3. On the Advanced tab page, enter a value 10 ms or larger in the field under "Send after the following number of idle milliseconds."

Modbus TCP Communication Format

This section describes the communication format used for Modbus TCP master and slave communication. Modbus TCP communication format starts with the Modbus TCP header followed by the RTU mode communication format without the idle 3.5 characters at both ends and CRC as shown below.

Modbus TCP Communication Format

Transaction ID	Protocol ID	Message Length (bytes)	Unit ID	Function Code	Data		
2 bytes	2 bytes	2 bytes	1 byte	1 byte	N bytes		
Modbus TCP Header							
RTU Mode Communication Format		Idle 3.5 characters	Slave No.	Function Code	Data	CRC	Idle 3.5 characters
		1 byte	1 byte	N bytes	2 bytes		

Transaction ID

The Modbus TCP slave (server) returns the request ID sent from the master (client) without change. When receiving the returned request ID, the master can confirm to which request the response was returned. When confirmation is not required, designate 0 as an transaction ID.

Protocol ID

Designate 0 to identify Modbus TCP protocol.

Message Length

Designate the length of the following message in bytes.

Unit ID

Designate a Modbus TCP slave address (1 through 247) to identify the unit.

Function Code

Designate a function code, such as 01 (read coil status) and 02 (read input status). See page 23-6.

Data

Designate required data for each function.

24: AS-Interface Master Communication

Introduction

This chapter describes general information about the Actuator-Sensor-Interface, abbreviated AS-Interface, and detailed information about using the AS-Interface master module.

About AS-Interface

AS-Interface is a type of field bus that is primarily intended to be used to control sensors and actuators. AS-Interface is a network system that is compatible with the IEC62026 standard and is not proprietary to any one manufacturer. A master device can communicate with slave devices such as sensors, actuators, and remote I/Os, using digital and analog signals transmitted over the AS-Interface bus.

The AS-Interface system is comprised of the following three major components:

- One master, such as the MicroSmart AS-Interface master module (FC4A-AS62M)
- One or more slave devices, such as sensors, actuators, switches, and indicators
- Dedicated 30V DC AS-Interface power supply (26.5 to 31.6V DC)

These components are connected using a two-core cable for both data transmission and AS-Interface power supply. ASInterface employs a simple yet efficient wiring system and features automatic slave address assignment function, while installation and maintenance are also very easy.

Applicable Sensors and Actuators for AS-Interface

AS-Interface Compatible Sensors and Actuators

AS-Interface compatible sensors and actuators communicate using the built-in AS-Interface function, and serve as ASInterface slaves when connected directly to the AS-Interface bus via a branch unit or a T-junction unit.

Sensors/Actuators Not Compatible with AS-Interface

Conventional sensors and actuators that are not compatible with the AS-Interface can also be connected to the AS-Interface bus using a remote I/O slave and be handled in the same way as devices that are compatible with the AS-Interface.

Maximum I/O points when using one or two AS-Interface master modules

AS-Interface Master Module	1 module	2 modules
Maximum Slaves	62 slaves	124 slaves
Maximum I/O Points	434 (248 inputs / 186 outputs)	868 (496 inputs / 372 outputs)
Maximum Communication Dis-	Without repeater: 100 m	Without repeater: 100 m
tance	With 2 repeaters: 300 m	With 2 repeaters: 300 m

AS-Interface System Requirements

Master

The AS-Interface master controls and monitors the status of slave devices connected to the AS-Interface bus.
Normally, the AS-Interface master is connected to a PLC (sometimes called 'host') or a gateway. For example, the MicroSmart AS-Interface master module is connected to the MicroSmart CPU module.
The FC5A MicroSmart CPU module can be used with one or two AS-Interface master modules, so two separate AS-Interface networks can be set up.

The AS-Interface master module can connect a maximum of 62 digital I/O slaves. A maximum of seven analog I/O slaves can also be connected to the AS-Interface master module (compliant with AS-Interface ver. 2.1 and analog slave profile 7.3).

- The AS-Interface master module cannot be connected to the all-in-one 10-I/O and 16-I/O type CPU modules and the expansion interface module.
- One or two AS-Interface master modules can be connected to the CPU module. If more than two AS-Interface master modules are connected, an error occurs and special data register D8037 (quantity of expansion I/O modules) stores error code 40 (hex).
- Normally, a maximum of four expansion I/O modules can be connected to the all-in-one 24-I/O type CPU module. But when one or two AS-Interface master modules are connected, only a total of three expansion modules can be connected, including the AS-Interface master modules. Do not connect more than three expansion modules due to the amount of heat generated. If more than three expansion modules, including the AS-Interface master module, are connected, an error occurs and special data register D8037 (quantity of expansion I/O modules) stores error code 20 (hex).
- Similarly, slim type CPU modules can normally connect a maximum of seven expansion I/O modules, but can connect a maximum of six expansion modules including one or two AS-Interface master modules. If more than six expansion modules, including the AS-Interface master module, are connected, an error occurs and special data register D8037 (quantity of expansion I/O modules) stores error code 20 (hex).
- The AS-Interface master module can connect a maximum of seven analog I/O slaves. When more than seven analog I/O slaves are connected, the AS-Interface system will not operate correctly.

Slaves

Various types of slave devices can be connected to the AS-Interface bus, including sensors, actuators, and remote I/O devices. Analog slaves can also be connected to process analog data.

Slaves are available in standard slaves and A/B slaves. Standard slaves have an address of 1 trough 31 in the standard address range. A / B slaves have an address of 1 A through 31A in the standard address range or 1 B through 31 B in the expanded address range. Among the A / B slaves, slaves with an address of $1 A$ through 31A are called A slaves, and slaves with an address of $1 B$ through $31 B$ are called B slaves.

AS-Interface Power Supply

The AS-Interface bus uses a dedicated 30V DC power supply (AS-Interface power supply), which is indicated with the AS-Interface mark. General-purpose power supply units cannot be used for the AS-Interface bus.

When using two AS-Interface master modules, two AS-Interface power supplies are

AS-Interface Marks needed. Since the AS-Interface cable transmits both signals and power, each network requires a separate power supply.

¢ Caution	- Use a VLSV (very low safety voltage) to power the AS-Interface bus. The normal output voltage of the AS-Interface power supply is 30 V DC

Recommended IDEC AS-Interface Power Supplies

Input Voltage	Output Voltage	Output Wattage	Type No.
100 to 240 V AC	30.5 V DC	73 W	PS2R-Q30ABL
		145 W	PS2R-F30ABL

Cables

The AS-Interface bus uses only one cable to transmit signals and power. Use one of the following cable types (the wire does not have to be stranded).
-Standard yellow unshielded AS-Interface cable (with polarity)

- Ordinary two-wire flat cable

AS-Interface Cable

Two-wire Flat Cable

Applicable Cable Specifications

Cable Type	Cable Size/Manufacturer	Cross-sectional View
AS-Interface Standard Cable	Cable sheath color: Yellow Conductor cross section: $1.5 \mathrm{~mm}^{2}$ LAPP's Cables Type No: 2170228 (sheath material EPDM) Type No: 2170230 (sheath material TPE)	
2-wire Flat Cable or Single Wires (See Note)	Conductor cross section Stranded wire: 0.5 to $1.0 \mathrm{~mm}^{2}$ Solid wire: 0.75 to $1.5 \mathrm{~mm}^{2}$ AWG: 20 to 16	

Note: When using single wires, the maximum cable length is 200 mm . See "Maximum Communication Distance" on page 24-1.

Main Features of AS-Interface V2 with Slave Expansion Capability

The AS-Interface is a reliable bus management system in which one master periodically monitors each slave device connected on the AS-Interface bus in sequence. The master manages the I/O data, parameters, and identification codes of each slave in addition to slave addresses. The management data depends on the type of the slave as follows:

Standard Slaves

- A maximum of four inputs and four outputs for each slave
- Four parameters for setting a slave's operation mode (P3, P2, P1, P0)
- Four identification codes (ID code, I/O code, ID2 code, and ID1 code)

A/B Slaves

- A maximum of four inputs and three outputs for each slave
- Three parameters for setting a slave's operation mode (P2, P1, P0)
- Four identification codes (ID code, I/O code, ID2 code, and ID1 code)

Note 1: Parameters P3 through P0 are used to set an operation mode of the slave. For details, see the user's manual for the slave.
Note 2: The slaves connected to the AS-Interface bus are distinguished from each other by the ID code and I/O code contained in each slave. Some slaves have ID2 code and ID1 code to indicate the internal functions of the slave. For example, analog slaves use the ID2 code to represent the channel number of the slave.

Note 3: The MicroSmart AS-Interface master module is also compatible with AS-Interface ver. 2.1 and earlier slaves.

Slave Addresses

Each standard slave connected to the AS-Interface bus can be allocated an address of 1 through 31 . Each A / B slave can be allocated an address of 1 A through 31 A or 1 B through 31 B . All slaves are set to address 0 at factory before shipment. The address of a slave can be changed using the "addressing tool." Using WindLDR, the addresses of slaves connected to the AS-Interface master modules 1 and 2 can also be changed (see page 24-35).

When a slave fails during operation and needs to be replaced, if the auto addressing function is enabled on the master module, just replace the slave with a new one (with address 0 and the same identification codes). The new slave will automatically be allocated the same address as the slave that was removed, and you do not have to set the address again. For details of the ASI command to enable auto addressing, see page 24-30.

Slave Identification

Slaves have the following four identification codes. The master checks the identification codes to determine the type and feature of the slave connected on the AS-Interface bus.

ID Code

The ID code consists of 4 bits to indicate the type of the slave, such as sensor, actuator, standard slave, or A / B slave. For example, the ID code for a standard remote I/O is 0 , and that for an A / B slave is A (hex).

I/O Code
The I/O code consists of 4 bits to indicate the quantity and allocation of I/O points on a slave.

I/O Code	Allocation						
Oh	I, I, I, I	4 h	I, I, B, B	8 h	$\mathrm{O}, \mathrm{O}, \mathrm{O}, \mathrm{O}$	Ch	O, O, B, B
1 h	$\mathrm{I}, \mathrm{I}, \mathrm{I}, \mathrm{O}$	5 h	$\mathrm{I}, \mathrm{O}, \mathrm{O}, \mathrm{O}$	9 h	$\mathrm{O}, \mathrm{O}, \mathrm{O}, \mathrm{I}$	Dh	$\mathrm{O}, \mathrm{I}, \mathrm{I}, \mathrm{I}$
2 h	$\mathrm{I}, \mathrm{I}, \mathrm{I}, \mathrm{B}$	6 h	$\mathrm{I}, \mathrm{B}, \mathrm{B}, \mathrm{B}$	Ah	$\mathrm{O}, \mathrm{O}, \mathrm{O}, \mathrm{B}$	Eh	$\mathrm{O}, \mathrm{B}, \mathrm{B}, \mathrm{B}$
3 h	$\mathrm{I}, \mathrm{I}, \mathrm{O}, \mathrm{O}$	7 h	$\mathrm{~B}, \mathrm{~B}, \mathrm{~B}, \mathrm{~B}$	Bh	$\mathrm{O}, \mathrm{O}, \mathrm{I}, \mathrm{I}$	Fh	(reserved)

I: input, O: output, B: input and output

ID2 Code

The ID2 code consists of 4 bits to indicate the internal function of the slave.

ID1 Code

The ID1 code consists of 4 bits to indicate additional identification of the slave. Standard slaves can have an ID1 code of 0000 through 1111 (bin). A/B slaves use the MSB to indicate A or B slave, and can have a unique value only for the lower three bits. The MSB of A slaves is set to 0 , and that of B slaves is set to 1 .

Quantities of Slaves and I/O Points

The quantity of slaves that can be connected to one AS-Interface master module is as follows.

- Standard slaves: 31 maximum
- A/B slaves: 62 maximum

The limits for slave quantities given above apply when the slaves are either all standard slaves or are all A / B slaves.
When 62 A/B slaves (with four inputs and three outputs) are connected, a maximum of $434 \mathrm{I} / \mathrm{O}$ points (248 inputs and 186 outputs) can be controlled by one AS-Interface master module.

When using a mix of standard slaves and A / B slaves together, the standard slaves can only use addresses $1(\mathrm{~A})$ through 31(A). Also, when a standard slave takes a certain address, the B address of the same number cannot be used for A / B slaves.

AS-Interface Bus Topology and Maximum Length

The AS-Interface bus topology is flexible, and you can wire the bus freely according to your requirements.
When repeaters or extenders are not used, the bus length can be 100 m (328 feet) at the maximum.
The FC4A-AS62M AS-Interface master module can use two repeaters to extend the bus length to 300 m .

AS-Interface Bus Cycle Time

The AS-Interface bus cycle time is the amount of time required for a master to cycle through every slave on the bus.
The information for each slave is continuously transmitted over the bus in sequence, so the AS-Interface bus cycle time depends on the quantity of active slaves.

- When up to 19 slaves are active, the bus cycle time is 3 ms .
- When 20 to 62 slaves are active, the bus cycle time is $0.156 \times(1+\mathrm{N}) \mathrm{ms}$ where N is the number of slaves.

When A slave and B slave have the same address number (e.g. 12A and 12B), the two slaves are alternately updated each cycle. Therefore, when the system consists of 31 A slaves and 31 B slaves, then the AS-Interface bus cycle time will be 10 ms.

Maximum AS-Interface Bus Cycle Time

- When 31 slaves are connected, the maximum bus cycle time is 5 ms .
- When 62 slaves are connected, the maximum bus cycle time is 10 ms .

High Reliability and Security

The AS-Interface employs a transfer process of high reliability and high security. The master monitors the AS-Interface power supply voltage and data transmitted on the bus, and detects slave failures and data errors.

Even when a slave is replaced or a new slave is added during operation, the AS-Interface master module need not be shut down and can continue uninterrupted communication with other active slaves on the bus.

Operation Basics

This section describes simple operating procedures for the basic AS-Interface system from programming WindLDR on a computer to monitoring the slave operation.

AS-Interface System Setup

The sample AS-Interface system consists of the following devices:

Name	Type No.	Description
FC5A MicroSmart Slim Type CPU Module	FC5A-D16RK1	-
MicroSmart AS-Interface Master Module	FC4A-AS62M	-
WindLDR	FC9Y-LP2CDW	Version 5.0 or higher
AS-Interface Standard Slave	-	1 unit Address 0 ID: 0, I/O: 7, ID2: F, ID1: 7
AS-Interface Power Supply	PS2R-Q30ABL	Output 30.5V DC, 2.4A (73W)

AS-Interface Cable Wiring

Before wiring the AS-Interface cable, remove the AS-Interface cable terminal block from the AS-Interface cable connector on the AS-Interface master module.

AS-Interface specifies use of brown cables for the AS-Interface + line, and blue cables for the AS-Interface - line. Connect the cables to match the color labels on the terminal block. Tighten the terminal screws to a torque of 0.5 to $0.6 \mathrm{~N} \cdot \mathrm{~m}$.

Insert the terminal block to the connector on the AS-Interface master module, and tighten the mounting screws to a torque of 0.3 to $0.5 \mathrm{~N} \cdot \mathrm{~m}$.

Power Supply

- When turning off the power to the CPU module, also turn off the AS-Interface power supply. If the CPU module is powered down and up while the AS-Interface power remains on, AS-Interface communication may stop due to a configuration error, resulting in a communication error.
- Turn on the AS-Interface power supply no later than the CPU module power supply, except when slave address 0 exists on the network. The two power supplies may be turned off in any order.
- Immediately after power-up, the CPU module cannot access slave I/O data in the AS-Interface master module. Make the user program so that slave I/O data are accessed after special internal relay M1945 (Normal_Operation_Active) has turned on. See page 24-25.

Power Supply Wiring Diagram

A recommended power supply wiring diagram is shown below. Use a common power switch for both the CPU module power supply and AS-Interface power supply to make sure that both power supplies are turned on and off at the same time.

Note: A failed slave can be replaced with a new slave with address 0 without turning off the power to the CPU module and the ASInterface line. But, if power has been turned off before replacing the slaves, install a new slave with address 0 and take one of the following steps, because the AS-Interface master module has to be initialized to enable communication.

- Disconnect the AS-Interface cable connector and turn on both power supplies. Five seconds later, connect the AS-Interface cable connector.
- Turn on the CPU module power supply first. Five seconds later, turn on the AS-Interface power supply.

Selecting the PLC Type

Start WindLDR on a computer.

1. From the WindLDR menu bar, select Configuration > PLC Type.

The PLC Selection dialog box appears.
2. Select FC5A-D16RX1.
3. Click $\mathbf{O K}$ to save changes and return to the ladder editing screen.

Function Area Settings

Use of the AS-Interface master module must be selected in the Function Area Settings dialog box.

1. From the WindLDR menu bar, select Configuration > Cartridges \& Modules.

The Function Area Settings dialog box for Cartridges \& Modules appears.

2. Make sure of a check mark in the check box on the left of Use AS-Interface Master Module.

This check box is checked as default. If FC5A-D12K1E or FC5A-D12S1E is selected under PLC Selection, the check box is not displayed because this setting is permanently enabled. Since this setting relates to the user program, download the user program to the CPU module after changing any of these settings.
If the ERR LED on the CPU module goes on when the AS-Interface master module is connected, download the user program to the CPU module after making the above setting.

Assigning a Slave Address

AS-Interface compatible slave devices are set to address 0 at factory. Connect the slave to the AS-Interface master module as shown on page 24-6. Do not connect two or more slaves with slave address 0 , otherwise the AS-Interface master module cannot recognize slave addresses correctly.

1. Power up the MicroSmart CPU module first. Approximately 5 seconds later, turn on the AS-Interface power supply.

Note: When slave address 0 is not mounted on the AS-Interface bus, the CPU module power supply and the AS-Interface power supply can be turned on at the same time. See page 24-7.
2. From the WindLDR menu bar, select Online > Configure Master to open the Configure AS-Interface Master dialog box. Press Refresh to collect slave information and update the screen display. (When configuration in the master module is complete, you do not have to press Refresh since the screen display is updated automatically.)

On the Configure AS-Interface Master dialog box, slave address 0 is shaded with yellow. This means that the master module has found slave address 0 on the AS-Interface bus. The CDI for address 0 shows $07 F 7$ (ID: 0, I/O: 7, ID2: F, ID1: 7).
3. Click the slave address " 00 " to open the Change Slave Address dialog box for slave 0 . To assign slave address 1 to the slave, enter $\mathbf{1}$ in the New Address field and click $\mathbf{O K}$.

The new address " 01 " is shaded with yellow to indicate that the address assignment is complete.
4. When changing slave addresses on other slaves, continue from step 3 if it is possible to wire the slave without turning off power, or from step 1 if the CPU module is shut down.

Configuring a Slave

Next, you have to set the slave configuration in the AS-Interface master module, either by using pushbuttons PB1 and PB2 on the AS-Interface master module or WindLDR.

Configuration Using Pushbuttons PB1 and PB2

1. Check that PWR LED and CMO LED on the AS-Interface master module are on (normal protected mode).
2. Press pushbuttons PB1 and PB2 together for 3 seconds. CMO LED turns off and LMO LED turns on (protected mode).
3. Press pushbutton PB2 for 3 seconds. CNF LED flashes (configuration mode).
4. About 5 seconds later, press pushbutton PB1 for 3 seconds. All I/O LEDs blink once to complete configuration.
5. Shut down the CPU module and AS-Interface master module, and power up again. Check that FLT LED is off, which indicates that configuration is complete.
6. Use WindLDR to view slave information on the Configure AS-Interface Master dialog box and check that all slaves are recognized correctly.

Configuration Using WindLDR

Slave configuration can be set using WindLDR in two ways; using the Auto Configuration or Manual Configuration button on the Configure AS-Interface Master dialog box.

1. Click the Auto Configuration button to store the configuration information (LDS, CDI, PI) of the connected slaves to the EEPROM (LPS, PCD, PP) in the AS-Interface master module. For details, see page 24-36.
The auto configuration automatically stores the information of slaves found on the AS-Interface bus to the EEPROM in the master module, and this completes configuration. Another method of configuration is manual configuration as follows.
2. Click the PCD value "FFFF" of slave address 01 to open the Configure Slave 01A dialog box.
3. Enter the same value as CDI "07F7" in the PCD field. (Set FFFF to PCD values of all unused slaves.)
4. Select initial settings of parameters (PP) P0 through P3, if required.

5. Click the Manual Configuration button to store the selected PCD and parameter values to the master module.
6. Check that the blue shade appears at slave address 01 . Now, configuration is complete.

Monitoring Digital I/O, and Changing Output Status and Parameters

While the MicroSmart is communicating with AS-Interface slaves through the AS-Interface bus, operating status of ASInterface slaves can be monitored using WindLDR on a computer. Output statuses and parameter image (PI) of slaves connected to the AS-Interface master module can also be changed using WindLDR.

1. From the WindLDR menu bar, select Online > Monitor, then select Online > Monitor Slaves. The Monitor AS-Interface Slaves dialog box appears.

Active slaves are indicated with blue shade.
Next step is to change output status of the active slave.
2. Click the output of slave address 01 to open the Slave Status 01A dialog box.
3. Click the On or Off button to change the statuses of outputs O 0 through O 3 and parameters (PI) PO through P3 as required.

The selected parameters (PI) are in effect until the CPU module is shut down. When the CPU module is powered up again, the parameter values (PP) selected in the slave configuration procedure (page 24-10) will take effect. To store the changed parameter values to the AS-Interface master module EEPROM, execute the Copy PI to PP command by storing 0306, 0100, 0000, 0000, 0001 to data registers D1941 through D1945. See page 24-30.

Troubles at System Start-up

The following table summarizes possible troubles at system start-up, probable causes and actions to be taken.

Trouble	Cause and Action
PWR LED is off. (power)	- AS-Interface power is not supplied to the AS-Interface master module. Check that wiring is correct and AS-Interface power is supplied. - Power is not supplied from the CPU module to the AS-Interface master module. Check the connection between the CPU module and the AS-Interface master module.
FLT LED is on. (fault)	- Slave configuration on the bus is incorrect. Use the WindLDR slave monitor function to check that slaves are connected correctly. Perform configuration, if necessary. For the configuration method, see page 24-34. If FLT LED remains on even though slaves are connected correctly and configuration is completed, either disconnect and reconnect the AS-Interface connector, or turn off and on the ASInterface power supply.
LMO LED is on. (local mode)	The CPU module fails to communicate with the AS-Interface master module. Check the following points. - Is the CPU module compatible with AS-Interface? Check the Type No. of the CPU module. - Is a check mark put in the check box "Use AS-Interface Master Module" in WindLDR Function Area Settings? The box is checked as default. If not, put a check mark and download the user program to the CPU module.
OFF LED is on. (offline)	- While a slave of address 0 was connected, power was turned on. After changing the slave address, power up again. For the address changing method, see page 24-35.
Slave operation is unstable.	- Check if there are two or more slaves with the same address. Each slave must have a unique address. If two slaves have the same address and same identification codes (ID, I/O, ID2, ID1), the AS-Interface master module may fail to detect an error. When changing the duplicate slave address using WindLDR, remove one of the slaves from the bus.

Pushbuttons and LED Indicators

This section describes the operation of pushbuttons PB1 and PB2 on the AS-Interface master module to change operation modes, and also explains the functions of address and I/O LED indicators.

Pushbutton Operation

The operations performed by pushbuttons PB1 and PB2 on the front of the AS-Interface master module depend on the duration of being pressed. A "long press" switches the operation mode, and a "short press" switches the slave being monitored on the I/O LEDs. If the duration of pressing PB1 or PB2 does not correspond to either of these, the status of the AS-Interface master module does not change.

Long Press

A "long press" takes effect when you press either pushbutton PB1 or PB2 or both for 3 seconds or more. Use the long press to change the operation mode of the AS-Interface master module or to save the configuration data to the AS-Interface master module EEPROM.

Short Press

A "short press" takes effect when you press either pushbutton PB1 or PB2 for 0.5 second or less. Use the short press to change the slave address when monitoring slave I/O status on the AS-Interface master module LED indicators.

Transition of AS-Interface Master Module Modes Using Pushbuttons

*1 Pushbutton operation or execution of the ASI command Go to Normal Protected Offline.
*2 Pushbutton operation or execution of the ASI command Go to Normal Protected Mode.
*3 Execution of the ASI command Prohibit Data Exchange.
*4 Execution of the ASI command Enable Data Exchange.
*5 Configuration is done by clicking the Auto Configuration or Manual Configuration button in WindLDR. The configuration data is saved to the AS-Interface master module EEPROM.

AS-Interface Master Module Operation Modes

The AS-Interface master module has two modes of operation: connected mode is used for actual operation, and local mode is used for maintenance purposes.

Connected Mode

In connected mode, the CPU module communicates with the AS-Interface master module to monitor and control each slave. Connected mode is comprised of the following three modes.

- Normal Protected Mode

When the CPU module is powered up, the AS-Interface master module initially enters normal protected mode of connected mode if no error occurs. This is the normal operation mode for the AS-Interface master module to perform data communication with the connected slaves.
If the configuration data stored in the AS-Interface master module do not match the currently connected slave configuration, the FLT LED on the front of the AS-Interface master module goes on. Execute configuration using the pushbuttons on the AS-Interface master module. Configuration can also be done using WindLDR. See page 24-36.

- Normal Protected Offline

The AS-Interface master module stops communication with all slaves and enables offline operation (initialization of the master module). In this mode, the CPU module cannot monitor the slave status.
To enter normal protected offline from normal protected mode, either long-press the PB2 button or execute the ASI command Go to Normal Protected Offline. To return to normal protected mode and resume data communication, either longpress the PB2 button again or execute the ASI command Go to Normal Protected Mode. For details about the ASI commands, see page 24-30.

- Normal Protected Data Exchange Off

Data communication with all slaves is prohibited. To enter this mode, execute the ASI command Prohibit Data Exchange. To return to normal protected mode and resume data communication, execute the ASI command Enable Data Exchange. For details about the ASI commands, see page 24-30.
When auto configuration or manual configuration is executed on WindLDR, the AS-Interface master module enters this mode during configuration.

Local Mode

In local mode, the CPU module does not communicate with the AS-Interface master module. Local mode is used to carry out maintenance operations such as checking the configuration and slave inputs. Use the input LEDs to check the slave input data during operation.

When the CPU module is powered up, the AS-Interface master module initially enters normal protected mode of connected mode if no error occurs. To switch from any of connected mode to local mode (protected mode), long-press the PB1 and PB2 buttons simultaneously. It is not possible to switch from local mode back to connected mode using the pushbuttons. To return to connected mode, shut down the CPU module and power up again.
Local mode is comprised of two modes: protected mode and configuration mode.

- Protected Mode

This mode operates the slaves in accordance with the slave configuration data stored in the AS-Interface master module. If the configuration data stored in the AS-Interface master module does not match the currently connected slave configuration, the FLT LED on the front of the AS-Interface master module goes on, and slaves are not operated correctly.
To enter protected mode from any of connected mode, long-press the PB1 and PB2 buttons simultaneously.

- Configuration Mode

This mode switches all currently connected slaves to active, regardless of the slave configuration data stored in the ASInterface master module. To store the current slave configuration data to the AS-Interface master module EEPROM, long press the PB1 button. This way, configuration is executed.
To enter configuration mode from protected mode, long-press the PB2 button. To return to protected mode, long-press the PB1 and PB2 buttons simultaneously.

LED Indicators

The LED indicators on the AS-Interface master module consist of status LEDs, I/O LEDs, and address LEDs.

LED Indicators		Description
Status LEDs	PWR (AS-Interface power supply)	Indicates the status of the AS-Interface power supply for the AS-Interface master module. Goes on when the AS-Interface power is supplied sufficiently.
	FLT (Fault)	Indicates the AS-Interface configuration status. Goes on when the permanent configuration data (PCD) stored in the AS-Interface master module EEPROM does not match the current slave configuration, or configuration data image (CDI). Then, configuration is not complete or an error was found on the AS-Interface bus.
	LMO (Local mode)	Indicates the mode of the AS-Interface master module. Goes on when the AS-Interface master module is in local mode. Goes off when the AS-Interface master module is in connected mode.
	CMO (Connected mode)	Indicates the mode of the AS-Interface master module. Goes on when the AS-Interface master module is in connected mode. Goes off when the AS-Interface master module is in local mode.
	OFF (Offline)	Indicates the operating status of the AS-Interface master module. Goes on when the AS-Interface master module is in normal protected offline.
	CNF (Configuration)	Indicates the configuration status of the AS-Interface master module. Flashes when the AS-Interface master module is in configuration mode.
Input LEDs	INO-IN3	Indicates the operating status of four inputs at the address indicated by the address LEDs. Goes on when the corresponding input at the indicated address is on.
Output LEDs	OUTO-OUT3	Indicates the operating status of four outputs at the address indicated by the address LEDs. Goes on when the corresponding output at the indicated address is on.
Address LEDs	$0 x-3 x \quad$ (place of 10) x0-x9 (place of 1) A, B (A or B slave)	Indicates the slave address of 0 A through 31B. Goes on when the selected address exists. Flashes when the selected address does not exist.

Status LEDs

The operation modes of the AS-Interface master module can be changed by pressing the pushbuttons on the front of the AS-Interface master module or by executing ASI commands. The operation modes can be confirmed on the six status LEDs on the AS-Interface master module. For details about the ASI commands, see page 24-30.

Status LED Indication

Status LED		PWR	FLT	LMO	CMO	OFF	CNF
Connected Mode	Normal Protected Mode	ON ${ }^{* 1}$	OFF ${ }^{*} 2$	OFF	ON	OFF	OFF
	Normal Protected Offline	ON ${ }^{* 1}$	ON	OFF	ON	ON	OFF
	Normal Protected Data Exchange Off	ON *1	ON	OFF	ON	OFF	OFF
Local Mode	Protected Mode	ON *1	OFF ${ }^{*} 2$	ON	OFF	OFF	OFF
	Configuration Mode	ON *1	OFF ${ }^{*} 2$	ON	OFF	OFF	Flash

*1: Goes off when AS-Interface power is not supplied.
*2: Goes on when an error is found on the AS-Interface bus.

Address LEDs and I/O LEDs

The operating status and I/O status of each slave can be monitored on the address LEDs and I/O LEDs on the front of the AS-Interface master module.

Slave Operating Status

The operating status of each slave can be determined by viewing the address LEDs and I/O LEDs.

Address LED	I/O LED	Description
ON	ON or OFF	The slave at this address is active.
ON	Flash	The slave at this address is active, but has an error.
Flash	OFF	This address is not assigned a slave.
OFF	OFF	The AS-Interface bus communication is disabled because the AS-Interface power is not supplied or the AS-Interface master module is in normal protected offline.

Slave I/O Status

The I/O status of each slave can be monitored on the address LEDs and I/O LEDs. Use the short press to change the slave address when monitoring slave I/O status on the AS-Interface master module. A short press on PB1 increments the address. At the last address (31B), another short press will return to the first address (OA). A short press on PB2 decrements the address. At the first address (0 A), another short press will return to the last address (31B).

The figures below illustrate what happens when you press the PB1 button while the address LEDs indicate 25A. The address LEDs increment to 26A where a slave is assigned. Note that the address LEDs flash if no slave is assigned.

Monitoring Slave Address 26A
Address LEDs go on and I/O LEDs indicate the statuses.

AS-Interface Devices

This section describes AS-Interface devices assigned in the CPU module to control and monitor the AS-Interface master module, and describes ASI commands used to update AS-Interface devices in the CPU module or to control the AS-Interface master module.

The FC5A MicroSmart CPU modules can be used with one or two AS-Interface master modules. For the first AS-Interface master module, which is mounted closer to the CPU module, the AS-Interface objects can be accessed through the ASInterface devices, such as internal relays M1300 through M1997 and data registers D1700 through D1999 as shown on page 24-19.
Details about AS-Interface objects for AS-Interface master module 2 are described on the following pages.

AS-Interface Power Supply $\times 2$

Note: When using two AS-Interface master modules, two ASInterface power supplies are needed. Since the AS-Interface cable transmits both signals and power, each network requires a separate power supply.

Processing Time

For AS-Interface master module 1, AS-Interface internal relays for digital I/O and status information, and data registers for LAS, LDS, LPF are updated in every scan. Data registers for analog I/O devices are also updated in every scan only when analog I/O are connected to the AS-Interface bus. The processing times for these AS-Interface devices are shown in the table on page 24-19.

Other AS-Interface data registers are updated when an ASI command is executed in the CPU module. For the processing times of the ASI commands, see page 24-30.

For AS-Interface master module 2, AS-Interface objects are updated using the RUNA instruction.

Accessing AS-Interface Objects for AS-Interface Master Module 1

The I/O data and parameters of slaves on the AS-Interface bus, the status of the AS-Interface bus, and various list information of the slaves are allocated to the AS-Interface master module EEPROM. This information is called AS-Interface objects, which can be accessed through the AS-Interface devices, such as internal relays M1300 through M1997 and data registers D1700 through D1999. The allocation for AS-Interface master module 1 is shown in the table below.

MicroSmart CPU Module Device Address		Precessing Time (ms) ${ }^{* 1}$	Read/ Write	AS-Interface Master Module EEPROM	Device Updated
Device	AS-Interface Master Module 1			AS-Interface Object	
AS-Interface Internal Relays	M1300-M1617	3.0	R *2	Digital input (IDI: input data image)	Every scan
	M1620-M1937	3.0	$\mathrm{W}^{* 2}$	Digital output (ODI: output data image)	
	M1940-M1997	1.0	R	Status information	
AS-Interface Data Registers	D1700-D1731	5.2	R	Analog input ${ }^{*} 4$	
	D1732-D1763	5.2	W	Analog output ${ }^{*} 4$	
	D1764-D1767	1.0	$\mathrm{R}^{* 2}$	List of active slaves (LAS)	
	D1768-D1771	1.0	$\mathrm{R}^{*}{ }^{\text {2 }}$	List of detected slaves (LDS)	
	D1772-D1775	1.0	$\mathrm{R}^{*}{ }^{\text {2 }}$	List of peripheral fault slaves (LPF)	
	D1776-D1779	1.0	R/W ${ }^{* 2 * 3}$	List of projected slaves (LPS)	Each time ASI command is executed
	D1780-D1811	5.2	$\mathrm{R}^{* 2}$	Configuration data image A (CDI)	
	D1812-D1843	5.2	$\mathrm{R}^{*} 2$	Configuration data image B (CDI)	
	D1844-D1875	5.2	R/W ${ }^{* 2 * 3}$	Permanent configuration data A (PCD)	
	D1876-D1907	5.2	R/W ${ }^{* 2 * 3}$	Permanent configuration data B (PCD)	
	D1908-D1923	3.0	$\mathrm{R}^{*}{ }^{\text {2 }}$	Parameter image (PI)	
	D1924-D1939	3.0	R/W *2*3	Permanent parameter (PP)	
	D1940	0.7	R/W	Slave 0 ID1 code	
	D1941-D1945	-	R/W	ASI command description	-
	D1946-D1999	-	-	(reserved)	-

*1: The time required for the CPU module to update the device data. When using AS-Interface master module 1 , the scan time increases by a minimum of 10 ms . For AS-Interface master module 2 , see page 24-32.
*2: These AS-Interface device data can be read or written using WindLDR. For details, see page 24-34.
*3: The LPS, PCD, and PP are set and downloaded to the CPU module using WindLDR. For details, see page 24-36.
*4: The analog I/O data is updated only when an analog slave is connected to the AS-Interface bus.

Accessing AS-Interface Objects for AS-Interface Master Module 2

When using two AS-Interface master modules, the AS-Interface objects for the second AS-Interface master module can be assigned to any internal relays and data registers and accessed using RUNA or STPA instructions. See page 24-32.

I/O Data for AS-Interface Master Module

The AS-Interface master module can process digital I/O data and analog I/O data. Digital I/O data can be a maximum of 4 digital inputs and 4 digital outputs per slave. Analog I/O data consists of 4 channels of 16 -bit analog input or output data per slave.

Digital I/O Data of Standard Slaves and Expansion Slaves

For AS-Interface master module 1, the digital I/O data for standard slaves and A/B slaves (sensors and actuators) on the AS-Interface bus are allocated to the AS-Interface internal relays in the ascending order starting with slave 0 . The input data image (IDI) for each slave is allocated to M1300 through M1617, and the output data image (ODI) is allocated to M1620 through M1937. For example, in the case of slave 3A, the input data is allocated to M1314 (DIO) through M1317 (DI3), and the output data is allocated to M1634 (DO0) through M1637 (DO3).

For AS-Interface master module 2, the digital I/O data can be accessed using RUNA or STPA instruction.

- Digital Input Data Image (IDI)

Device Address		Data Format							
AS-Interface Master Module 1	AS-Interface Master Module 2 *	$\begin{gathered} 7 \\ (D 13) \end{gathered}$	$\begin{gathered} 6 \\ \text { (DI2) } \end{gathered}$	$\begin{gathered} 5 \\ \text { (DII) } \end{gathered}$	$\begin{gathered} \hline 4 \\ \text { (DIO) } \end{gathered}$	$\begin{gathered} \hline 3 \\ \text { (DI3) } \end{gathered}$	$\begin{gathered} 2 \\ (\mathrm{D} \mid 2) \end{gathered}$	$\begin{gathered} 1 \\ \text { (DI1) } \end{gathered}$	$\begin{gathered} 0 \\ \text { (DIO) } \end{gathered}$
M1300	+0 (low byte)	Slave 1(A)				(Slave 0)			
M1310	+0 (high byte)	Slave 3(A)				Slave 2(A)			
M1320	+1 (low byte)	Slave 5(A)				Slave 4(A)			
M1330	+1 (high byte)	Slave 7(A)				Slave 6(A)			
M1340	+2 (low byte)	Slave 9(A)				Slave 8(A)			
M1350	+2 (high byte)	Slave 11(A)				Slave 10(A)			
M1360	+3 (low byte)	Slave 13(A)				Slave 12(A)			
M1370	+3 (high byte)	Slave 15(A)				Slave 14(A)			
M1380	+4 (low byte)	Slave 17(A)				Slave 16(A)			
M1390	+4 (high byte)	Slave 19(A)				Slave 18(A)			
M1400	+5 (low byte)	Slave 21(A)				Slave 20(A)			
M1410	+5 (high byte)	Slave 23(A)				Slave 22(A)			
M1420	+6 (low byte)	Slave 25(A)				Slave 24(A)			
M1430	+6 (high byte)	Slave 27(A)				Slave 26(A)			
M1440	+7 (low byte)	Slave 29(A)				Slave 28(A)			
M1450	+7 (high byte)	Slave 31(A)				Slave 30(A)			
M1460	+8 (low byte)	Slave 1B				-			
M1470	+8 (high byte)	Slave 3B				Slave 2B			
M1480	+9 (low byte)	Slave 5B				Slave 4B			
M1490	+9 (high byte)	Slave 7B				Slave 6B			
M1500	+10 (low byte)	Slave 9B				Slave 8B			
M1510	+10 (high byte)	Slave 11B				Slave 10B			
M1520	+11 (low byte)	Slave 13B				Slave 12B			
M1530	+11 (high byte)	Slave 15B				Slave 14B			
M1540	+12 (low byte)	Slave 17B				Slave 16B			
M1550	+12 (high byte)	Slave 19B				Slave 18B			
M1560	+13 (low byte)	Slave 21B				Slave 20B			
M1570	+13 (high byte)	Slave 23B				Slave 22B			
M1580	+14 (low byte)	Slave 25B				Slave 24B			
M1590	+14 (high byte)	Slave 27B				Slave 26B			
M1600	+15 (low byte)	Slave 29B				Slave 28B			
M1610	+15 (high byte)	Slave 31B				Slave 30B			

[^2]
- Digital Output Data Image (ODI)

Device Address		Data Format							
AS-Interface Master Module 1	AS-Interface Master Module 2 *	$\begin{gathered} 7 \\ \text { (DO3) } \end{gathered}$	$\begin{gathered} 6 \\ (\mathrm{DO} 2) \end{gathered}$	$\begin{gathered} 5 \\ (\mathrm{DO1}) \end{gathered}$	$\begin{gathered} 4 \\ (D O O) \end{gathered}$	$\begin{gathered} 3 \\ (\mathrm{DO}) \end{gathered}$	$\begin{gathered} 2 \\ (\mathrm{DO} 2) \end{gathered}$	$\begin{gathered} 1 \\ (\mathrm{DO1}) \end{gathered}$	$\begin{gathered} 0 \\ \text { (DOO) } \end{gathered}$
M1620	+0 (low byte)	Slave 1(A)				(Slave 0)			
M1630	+0 (high byte)	Slave 3(A)				Slave 2(A)			
M1640	+1 (low byte)	Slave 5(A)				Slave 4(A)			
M1650	+1 (high byte)	Slave 7(A)				Slave 6(A)			
M1660	+2 (low byte)	Slave 9(A)				Slave 8(A)			
M1670	+2 (high byte)	Slave 11(A)				Slave 10(A)			
M1680	+3 (low byte)	Slave 13(A)				Slave 12(A)			
M1690	+3 (high byte)	Slave 15(A)				Slave 14(A)			
M1700	+4 (low byte)	Slave 17(A)				Slave 16(A)			
M1710	+4 (high byte)	Slave 19(A)				Slave 18(A)			
M1720	+5 (low byte)	Slave 21(A)				Slave 20(A)			
M1730	+5 (high byte)	Slave 23(A)				Slave 22(A)			
M1740	+6 (low byte)	Slave 25(A)				Slave 24(A)			
M1750	+6 (high byte)	Slave 27(A)				Slave 26(A)			
M1760	+7 (low byte)	Slave 29(A)				Slave 28(A)			
M1770	+7 (high byte)	Slave 31(A)				Slave 30(A)			
M1780	+8 (low byte)	Slave 1B				-			
M1790	+8 (high byte)	Slave 3B				Slave 2B			
M1800	+9 (low byte)	Slave 5B				Slave 4B			
M1810	+9 (high byte)	Slave 7B				Slave 6B			
M1820	+10 (low byte)	Slave 9B				Slave 8B			
M1830	+10 (high byte)	Slave 11B				Slave 10B			
M1840	+11 (low byte)	Slave 13B				Slave 12B			
M1850	+11 (high byte)	Slave 15B				Slave 14B			
M1860	+12 (low byte)	Slave 17B				Slave 16B			
M1870	+12 (high byte)	Slave 19B				Slave 18B			
M1880	+13 (low byte)	Slave 21B				Slave 20B			
M1890	+13 (high byte)	Slave 23B				Slave 22B			
M1900	+14 (low byte)	Slave 25B				Slave 24B			
M1910	+14 (high byte)	Slave 27B				Slave 26B			
M1920	+15 (low byte)	Slave 29B				Slave 28B			
M1930	+15 (high byte)	Slave 31B				Slave 30B			

* Device Address represents the offset from the Device Address designated in the RUNA or STPA instruction dialog box.

Caution

- Immediately after power up, the digital I/O data of standard slaves and expansion slaves cannot be accessed. Data communication between the CPU module and the connected slaves starts when special internal relay M1945 (Normal_Operation_Active) turns on. Make sure that M1945 is on before starting to access the slave I/O data.

Analog I/O Data of Analog Slaves

For AS-Interface master module 1, the I/O data for a maximum of seven analog slaves (four channels for each slave) on the AS-Interface bus is stored to AS-Interface data registers in the CPU module. The analog slave addresses (1 to 31) are in the ascending order. The input data for each analog slave is allocated to data registers D1700 to D1731, and the output data is allocated to D1732 to D1763.

For AS-Interface master module 2, the analog I/O data can be accessed using RUNA or STPA instructions.
The AS-Interface master module is compliant with analog slave profile 7.3.

! Caution - The maximum number of analog slaves that can be connected to the AS-Interface bus is seven. Do
not connect eight or more analog slaves to one bus, otherwise the slaves will not function correctly.
- When data registers D1700 through D1731 allocated to analog inputs contain 7FFF, do not use this
data for programming, because this value is reserved for a special meaning as follows:
Unused channel on a slave allocated to analog slave. (For a channel on a slave not allocated an analog slave, the corresponding data register holds an indefinite value.) Data overflow. Communication between the master and analog slave is out of synchronism. - When using analog slaves, read the user's manual for the analog slave to process the data properly.

- Analog Input Data

Device Address		Channel No.	Data Format
AS-Interface Master Module 1	AS-Interface Master Module 2 *		
D1700	+0	Channel 1	1st data (AIO)
D1701	+1	Channel 2	
D1702	+2	Channel 3	
D1703	+3	Channel 4	
D1704	+4	Channel 1	2nd data (Al1)
D1705	+5	Channel 2	
D1706	+6	Channel 3	
D1707	+7	Channel 4	
D1708	+8	Channel 1	3rd data (AI2)
D1709	+9	Channel 2	
D1710	+10	Channel 3	
D1711	+11	Channel 4	
D1712	+12	Channel 1	4th data (AI3)
D1713	+13	Channel 2	
D1714	+14	Channel 3	
D1715	+15	Channel 4	
D1716	+16	Channel 1	5th data (AI4)
D1717	+17	Channel 2	
D1718	+18	Channel 3	
D1719	+19	Channel 4	
D1720	+20	Channel 1	6th data (A15)
D1721	+21	Channel 2	
D1722	+22	Channel 3	
D1723	+23	Channel 4	
D1724	+24	Channel 1	7th data (A16)
D1725	+25	Channel 2	
D1726	+26	Channel 3	
D1727	+27	Channel 4	
D1728	+28	-	(reserved)
D1729	+29	-	
D1730	+30	-	
D1731	+31	-	

- Analog Output Data

Device Address		Channel No.	Data Format
AS-Interface Master Module 1	AS-Interface Master Module $\mathbf{2}^{*}$		
D1732	+0	Channel 1	1st data (AOO)
D1733	+1	Channel 2	
D1734	+2	Channel 3	
D1735	+3	Channel 4	
D1736	+4	Channel 1	2nd data (AO1)
D1737	+5	Channel 2	
D1738	+6	Channel 3	
D1739	+7	Channel 4	
D1740	+8	Channel 1	3rd data (AO2)
D1741	+9	Channel 2	
D1742	+10	Channel 3	
D1743	+11	Channel 4	
D1744	+12	Channel 1	4th data (AO3)
D1745	+13	Channel 2	
D1746	+14	Channel 3	
D1747	+15	Channel 4	
D1748	+16	Channel 1	5th data (AO4)
D1749	+17	Channel 2	
D1750	+18	Channel 3	
D1751	+19	Channel 4	
D1752	+20	Channel 1	6th data (AO5)
D1753	+21	Channel 2	
D1754	+22	Channel 3	
D1755	+23	Channel 4	
D1756	+24	Channel 1	7th data (AO6)
D1757	+25	Channel 2	
D1758	+26	Channel 3	
D1759	+27	Channel 4	
D1760	+28	-	(reserved)
D1761	+29	-	
D1762	+30	-	
D1763	+31	-	

* Device Address represents the offset from the Device Address designated in the RUNA or STPA instruction dialog box.

For example, when analog input slaves 1,13 and 20 , analog output slaves 5 and 25 , and analog I / O slaves 14 and 21 are used, the analog I/O slave data will be allocated by configuration as shown below and maintained until the next configuration is executed. Four channels (8 bytes) are always reserved for each slave.

The data range area for AS-Interface module 2 is the same.

Analog Slave Module	AS-Interface Master Module 1 Data Storage	Analog Input Slave	AS-Interface Master Module 1 Data Storage	Analog Output Slave
1st	D1700-D1703	Slave 1	D1732-D1735	Unused
2nd	D1704-D1707	Unused	D1736-D1739	Slave 5
3rd	D1708-D1711	Slave 13	D1740-D1743	Unused
4th	D1712-D1715	Slave 14	D1744-D1747	Slave 14
5th	D1716-D1719	Slave 20	D1748-D1751	Unused
6th	D1720-D1723	Slave 21	D1752-D1755	Slave 21
7th	D1724-D1727	Unused	D1756-D1759	Slave 25
(8th)	(D1728-D1731)	(reserved)	(D1760-D1763)	(reserved)

Status Information

For AS-Interface master module 1, the status information is allocated to AS-Interface internal relays M1940 through M1997. These internal relays are used to monitor the status of the AS-Interface bus. If an error occurs on the bus, you can also confirm the error with the status LEDs on the front of the AS-Interface master module in addition to these status internal relays.

For AS-Interface master module 2, the status information can be accessed using RUNA or STPA instructions.

- Status Information Internal Relays

Device Address		Status	Description	
AS-Interface Master Module 1	AS-Interface Master Module 2 *		ON	OFF
M1940	$\begin{gathered} +0 \\ \text { (low byte) } \end{gathered}$	Config_OK	Configuration is complete.	Configuration is incomplete.
M1941		LDS. 0	Slave address 0 is detected on the AS-Interface bus.	Slave address 0 is not detected on the AS-Interface bus.
M1942		Auto_Address_Assign	Auto addressing is enabled.	Auto addressing is disabled.
M1943		Auto_Address_Available	Auto addressing is ready.	Auto addressing is not ready.
M1944		Configuration	Configuration mode is enabled.	Other than configuration mode.
M1945		Normal_Operation_Active	Normal protected mode is enabled.	Other than normal protected mode.
M1946		APF/not APO	AS-Interface power supply failure.	AS-Interface power supply is normal.
M1947		Offline_Ready	Normal protected offline is enabled.	Other than normal protected offline.
M1950	+0 (high byte)	Periphery_OK	Peripheral devices are normal .	Peripheral devices are abnormal.
M1951-M1957		(reserved)	-	-
M1960	$\begin{gathered} +1 \\ \text { (low byte) } \end{gathered}$	Data_Exchange_Active	Data exchange is enabled.	Data exchange is prohibited.
M1961		Off-line	Command to go to normal protected offline was issued by the pushbutton or WindLDR.	Command to go to normal protected offline was not issued.
M1962		Connected Mode	Connected mode is enabled.	Local mode is enabled.
M1963-M1967	+1 (high byte)	(reserved)	-	-
M1970-M1997	+2	(reserved)	-	-

* Device Address represents the offset from the Device Address designated in the RUNA or STPA instruction dialog box.

M1940 Config_OK

M1940 indicates the configuration status. M1940 goes on when the permanent configuration data (PCD) stored in the AS-Interface master module EEPROM matches the configuration data image (CDI). When configuration is changed, e.g. a new slave is added or a slave fails, M1940 goes off. Then, the FLT LED goes on.

M1941 LDS. 0

M1941 is used to check for the presence of a slave with address 0 on the AS-Interface bus. M1941 goes on when a slave with address 0 (the factory setting) is detected on the AS-Interface bus in normal protected mode or protected mode, or when a slave address is changed to 0 while the AS-Interface master module is in normal protected mode.

M1942 Auto_Address_Assign

M1942 indicates that the auto addressing function is enabled. The default setting is "enabled," and M1942 is normally on. This setting can be changed using the ASI commands Enable Auto Addressing and Disable Auto Addressing.
Note: When the auto addressing function is enabled at the AS-Interface master module and a slave fails, you can replace the slave with a new slave which has the same identification codes without stopping the AS-Interface bus.

- If the replacement slave is assigned the same address and has the same identification codes as the failed slave, the replacement slave is automatically added to the LDS (list of detected slaves) to continue operation. If the assigned address or the identification codes of the replacement slave are different from the failed slave, the FLT LED will go on.
- When replacing a failed slave with a new slave which is assigned address 0 (factory setting) and has the same identification codes, the new slave will be assigned the address of the failed slave and added to the LDS and LAS (list of active slaves). If the identification codes of the replacement slave are different from the failed slave, the FLT LED will go on.
- The auto addressing function for a replacement slave works only when one slave has failed. This function cannot be used to replace multiple slaves.

M1943 Auto_Address_Available

M1943 indicates whether or not the conditions for the auto addressing function are satisfied. M1943 goes on when the auto addressing function is enabled and there is one faulty slave (a slave which cannot be recognized by the AS-Interface master module) on the AS-Interface bus.

M1944 Configuration

M1944 indicates whether the AS-Interface master module is in configuration mode (on) or other mode (off). While configuration mode is enabled, M1944 remains on, and the CNF LED flashes.

M1945 Normal_Operation_Active

M1945 remains on while the AS-Interface master module is in normal protected mode. M1945 is off while in other modes. When M1945 turns on, the CPU module starts to exchange data communication with the connected slaves.

M1946 APF/not APO

M1946 goes on when the AS-Interface power supply has failed, then the PWR LED goes off.

M1947 Offline_Ready

M1947 indicates that the AS-Interface master module is in normal protected offline. While in normal protected offline, M1947 remains on and the OFF LED also remains on.

M1950 Periphery_OK

M1950 remains on while the AS-Interface master module does not detect a failure in peripheral devices. When a failure is found, M1950 goes off.

M1960 Data_Exchange_Active

M1960 indicates that data exchange is enabled. While M1960 is on, the AS-Interface master module is in normal protected mode, and data exchange between the AS-Interface master module and slaves is enabled. The data exchange can be enabled and disabled using the ASI commands Enable Data Exchange and Prohibit Data Exchange.

M1961 Off-line

M1961 goes on when a command to switch to normal protected offline is issued. To switch to normal protected offline from normal protected mode, either press the PB2 button on the AS-Interface master module or issue the ASI command Go to Normal Protected Offline. M1961 remains on until normal protected offline is exited.

M1962 Connected Mode

M1962 indicates that the AS-Interface master module is in connected mode. While in connected mode, M1962 remains on. Then, LMO LED remains off and the CMO LED remains on.

Slave List Information

For AS-Interface master module 1, data registers D1764 through D1779 are assigned to slave list information to determine the operating status of the slaves. The slave list information is grouped into four lists. List of active slaves (LAS) shows the slaves currently in operation. List of detected slaves (LDS) the slaves detected on the AS-Interface bus. List of peripheral fault slaves (LPF) the faulty slaves. List of projected slaves (LPS) the slave configuration stored in the AS-Interface master module.

For AS-Interface master module 2, the slave list information can be accessed using RUNA or STPA instructions.

List of Active Slaves (LAS)

For AS-Interface master module 1, data registers D1764 through D1767 are allocated to read the LAS. You can check the register bits to determine the operating status of each slave. When a bit is on, it indicates that the corresponding slave is active.

Device Address		Data Format	
AS-Interface Master Module 1	AS-Interface Master Module 2		
D1764	+0	Bits 15 to 8	Bits 7 to 0
D1765	+1	Slaves 15(A) to 8(A)	Slaves 7(A) to 0
D1766	+2	Slaves 31(A) to 24(A)	Slaves 23(A) to 16(A)
D1767	+3	Slaves 15B to 8B	Slaves 7B to (0B)

List of Detected Slaves (LDS)

For AS-Interface master module 1, data registers D1768 through D1771 are allocated to read the LDS. You can check the register bits to determine the detection status of each slave. When a bit is on, it indicates that the corresponding slave has been detected by the master.

Device Address		Data Format	
AS-Interface Master Module 1	AS-Interface Master Module 2		
D1768	+4	Bits 15 to 8	Bits 7 to 0
D1769	+5	Slaves 15(A) to 8(A)	Slaves 7(A) to 0
D1770	+6	Slaves 31(A) to 24(A)	Slaves 23(A) to 16(A)
D1771	+7	Slaves 15B to 8B	Slaves 7B to (0B)

List of Peripheral Fault Slaves (LPF)

For AS-Interface master module 1, data registers D1772 through D1775 are allocated to read the LPF. You can check the register bits to determine the fault status of each slave. When a bit is on, it indicates that the corresponding slave is faulty.

Device Address		Data Format	
AS-Interface Master Module 1	AS-Interface Master Module 2		
D1772	+8	Bits 15 to 8	Bits 7 to 0
D1773	+9	Slaves 15(A) to 8(A)	Slaves 7(A) to 0
D1774	+10	Slaves 31(A) to 24(A)	Slaves 23(A) to 16(A)
D1775	+11	Slaves 15B to 8B	Slaves 7B to (0B)

[^3]
List of Projected Slaves (LPS)

For AS-Interface master module 1, D1776 through D1779 are allocated to read and write the LPS. The LPS settings are stored to the AS-Interface master module when either Auto Configuration or Manual Configuration is executed on WindLDR. The ASI command Read LPS can be used to read the LPS data to data registers D1776 through D1779. Then, you can check the register bits to determine the slave projection. When a bit is on, it indicates that the corresponding slave is set as a projected slave. After changing the LPS settings, execute the ASI command Read LPS, then you can use the updated data for program execution.
For AS-Interface master module 2, the list of projected slaves cannot be accessed using the RUNA or STPA instruction.

Device Address		Data Format	
AS-Interface Master Module 1	AS-Interface Master Module 2	Bits 15 to 8	Bits 7 to 0
D1776	-	Slaves 15(A) to 8(A)	Slaves 7(A) to 0
D1777	-	Slaves 31(A) to 24(A)	Slaves 23(A) to 16(A)
D1778	-	Slaves 15B to 8B	Slaves 7B to (0B)
D1779	-	Slaves 31B to 24B	Slaves 23B to 16B

Slave Identification Information (Slave Profile)

For AS-Interface master module 1, data registers D1780 through D1940 are assigned to the slave identification information, or the slave profile. The slave profile includes configuration data and parameters to indicate the slave type and slave operation, respectively.
For AS-Interface master module 2, the slave identification information can not be accessed using RUNA or STPA instructions.

Configuration Data Image (CDI)

For AS-Interface master module 1, data registers D1780 through D1843 are allocated to read the CDI of each slave. The CDI is the current slave configuration data collected by the AS-Interface master module at power-up and stored in the ASInterface master module.

The CDI is made up of four codes: the ID code, I/O code, ID2 code, and ID1 code. The CDI of slaves not connected to the AS-Interface bus is FFFFh.
The ASI command Read CDI can be used to read the CDI data to data registers D1780 through D1843. Execute the ASI command Read CDI before using the CDI data for program execution.

Device Address		Data Format		
AS-Interface Master Module 1	AS-Interface Master Module 2	Bits 15 to 12 ID Code	Bits 11 to 8 I/O Code	Bits 7 to 4 ID2 Code
D1780	-		Slave 0	
D1781	-		Slave 1(A)	
D1782	-		Slave 2(A)	
D(1780+N)	-	Slave N(A)		
D1811	-	Slave 31(A)		
D1812	-	(unused)		
D1813	-	Slave 1B		
D(1812+N)	-	Slave NB		
D1843	-	Slave 31B		

Permanent Configuration Data (PCD)

For AS-Interface master module 1, data registers D1844 through D1907 are allocated to read and write the PCD of each slave. Like the CDI, the PCD is made up of four codes: the ID code, I/O code, ID2 code, and ID1 code.
When auto configuration is executed, the CDI is copied to the PCD and stored in the ROM of the AS-Interface master module. When you execute manual configuration, you can set the PCD using the Configure Slave dialog box on WindLDR. Set the PCD of each slave to the same value as its CDI. If the PCD is different from the CDI for a slave, then that slave does not function correctly. Set FFFFh to the PCD of vacant slave numbers.
The ASI command Read PCD can be used to read the PCD data to data registers D1844 through D1907. Execute the ASI command Read PCD before using the PCD data for program execution.

Device Address		Data Format			
AS-Interface Master Module 1	AS-Interface Master Module 2	Bits 15 to 12 ID Code	Bits 11 to 8 I/O Code	Bits 7 to 4 ID2 Code	Bits 3 to 0 ID1 Code
D1844	-	Slave 0			
D1845	-	Slave 1(A)			
D1846	-	Slave 2(A)			
D(1844+N)	-	Slave N(A)			
D1875	-	Slave 31(A)			
D1876	-	(unused)			
D1877	-	Slave 1B			
D(1876+N)	-	Slave NB			
D1907	-	Slave 31B			

Parameter Image (PI)

For AS-Interface master module 1, data registers D1908 through D1923 are allocated to read the PI of each slave. The PI is made up of four parameters: the P3, P2, P1, and P0. The PI is the current slave parameter data collected by the AS-Interface master module at power-up and stored in the AS-Interface master module. To change the PI settings, use WindLDR (Slave Status dialog box) or execute the ASI command Change Slave PI.
The ASI command Read PI can be used to read PI data to data registers D1908 through D1923. After changing the PI settings, execute the ASI command Read PI, then you can use the updated PI data for program execution.

Device Address		Data Format			
AS-Interface Master Module 1	AS-Interface Master Module 2	Bits 15 to 12 P3/P2/P1/PO	Bits 11 to 8 P3/P2/P1/P0	Bits 7 to 4 P3/P2/P1/P0	Bits 3 to 0 P3/P2/P1/P0
D1908	-	Slave 3(A)	Slave 2(A)	Slave 1(A)	Slave 0
D1909	-	Slave 7(A)	Slave 6(A)	Slave 5(A)	Slave 4(A)
D1910	-	Slave 11(A)	Slave 10(A)	Slave 9(A)	Slave 8(A)
D(1908+N/4)	-	Slave (N+3)(A)	Slave (N+2)(A)	Slave (N+1)(A)	Slave N(A)
D1915	-	Slave 31(A)	Slave 30(A)	Slave 29(A)	Slave 28(A)
D1916	-	Slave 3B	Slave 2B	Slave 1B	(unused)
D1917	-	Slave 7B	Slave 6B	Slave 5B	Slave 4B
D(1916+N/4)	-	Slave (N+3)B	Slave (N+2)B	Slave (N+1)B	Slave NB
D1923	-	Slave 31B	Slave 30B	Slave 29B	Slave 28B

Permanent Parameter (PP)

For AS-Interface master module 1, data registers D1924 through D1939 are allocated to read and write the PP of each slave. Like the P1, the PP is made up of four parameters: the P3, P2, P1, and PO. When auto configuration is executed, the PI is copied to the PP and stored in the ROM of the AS-Interface master module. When you execute manual configuration, you can set the PP using the Configure Slave dialog box on WindLDR.

The ASI command Read PP can be used to read PP data to data registers D1924 through D1939. After changing the PP settings, execute the ASI command Read PP, then you can use the updated PP data for program execution.

Device Address		Data Format			
AS-Interface Master Module 1	AS-Interface Master Module 2	Bits 15 to 12 P3/P2/P1/P0	Bits 11 to 8 P3/P2/P1/P0	Bits 7 to 4 P3/P2/P1/P0	Bits 3 to 0 P3/P2/P1/P0
D1924	-	Slave 3(A)	Slave 2(A)	Slave 1(A)	Slave 0
D1925	-	Slave 7(A)	Slave 6(A)	Slave 5(A)	Slave 4(A)
D1926	-	Slave 11(A)	Slave 10(A)	Slave 9(A)	Slave 8(A)
D(1924+N/4)	-	Slave (N+3)(A)	Slave (N+2)(A)	Slave (N+1)(A)	Slave N(A)
D1931	-	Slave 31(A)	Slave 30(A)	Slave 29(A)	Slave 28(A)
D1932	-	Slave 3B	Slave 2B	Slave 1B	(unused)
D1933	-	Slave 7B	Slave 6B	Slave 5B	Slave 4B
D(1932+N/4)	-	Slave (N+3)B	Slave (N+2)B	Slave (N+1)B	Slave NB
D1939	-	Slave 31B	Slave 30B	Slave 29B	Slave 28B

Changing ID1 Code of Slave 0

For AS-Interface master module 1, data register D1940 is allocated to read and write the ID1 code of slave 0 . To change the slave 0 ID1 settings, store a required value in D1940 and execute the ASI command Write Slave 0 ID1. The ASI command Read Slave 0 ID1 can be used to read slave 0 ID1 data to data register D1940. After changing the slave 0 ID1 settings, execute the ASI command Read Slave 0 ID1, then you can use the updated slave 0 ID1 data for program execution.

Device Address		Data Format			
AS-Interface Master Module 1	AS-Interface Master Module 2	Bits 15 to 12	Bits 11 to 8	Bits 7 to 4	Bits 3 to 0
D1940	-	-	-	-	ID1 code

ASI Commands (AS-Interface Master Module 1)

The ASI commands are used to update AS-Interface devices in the CPU module or to control the AS-Interface master module 1. Data registers D1941 through D1944 are used to store command data. D1945 is used to store a request code before executing the command. While the command is executed, D1945 stores status and result codes.

ASI Command Format

Command Part (8 bytes)				Request/Result
D1941	D1942	D1943	D1944	D1945

ASI Command Data

To execute an ASI command, store required values to data resisters D1941 through D1945 as listed in the table below:

ASI Command	Processing Time (ms)	Description	Command Data (Hexadecimal)				
			D1941	D1942	D1943	D1944	D1945
Read LPS	$1.0{ }^{* 3}$	Reads LPS to D1776-D1779	010B	084C	0000	0000	0001
Read CDI	$10.4 * 3$	Reads CDI to D1780-D1843	010C	4050	0000	0000	0001
Read PCD	$10.4 * 3$	Reads PCD to D1844-D1907	O10E	4090	0000	0000	0001
Read PI	3.0 *3	Reads PI to D1908-D1923	0107	20D0	0000	0000	0001
Read PP	$3.0{ }^{* 3}$	Reads PP to D1924-D1939	0108	20E0	0000	0000	0001
Read Slave 0 ID1	$0.7{ }^{* 3}$	Reads slave 0 ID1 to D1940	0109	02F0	0000	0000	0001
Write Slave 0 ID1	$0.7{ }^{* 3}$	Writes D1940 to slave 0 ID1	0209	02F0	0000	0000	0001
Copy PI to PP	$0.8{ }^{* 4}$	Copies parameter image to permanent parameter	0306	0100	0000	0000	0001
Change Slave PI ${ }^{* 1}$	$0.8{ }^{* 4}$	Writes PI (*) to slave (**) (Note)	0306	0102	000*	00**	0001
Go to Normal Protected Offline	$0.8{ }^{* 4}$	From normal protected mode to normal protected offline	0306	0301	0000	0000	0001
Go to Normal Protected Mode	$0.8{ }^{* 4}$	From normal protected offline to normal protected mode	0306	0300	0000	0000	0001
Prohibit Data Exchange	$0.8{ }^{* 4}$	From normal protected mode to normal protected data exchange off	0306	0401	0000	0000	0001
Enable Data Exchange	$0.8{ }^{*}$	From normal protected data exchange off to normal protected mode	0306	0400	0000	0000	0001
Change Slave Address ${ }^{* 2}$	$0.8{ }^{* 4}$	Change slave address (**) to new address (++) (Note)	0306	0500	00**	00++	0001
Enable Auto Addressing	$0.8{ }^{* 4}$	Enables auto address assign (default)	0306	0800	0000	0000	0001
Disable Auto Addressing	$0.8{ }^{* 4}$	Disables auto address assign	0306	0801	0000	0000	0001

*1: WindLDR has the Slave Status dialog box to execute this command to write a PI value to a designated slave. See Sample Program on page 24-31.
*2: WindLDR has the Change Slave Address dialog box to execute this command.
*3: Completed in a scan when the five data registers store respective values. When completed, D1945 stores 4. See Request and Result Codes on page 24-31. Other commands takes several scans to complete execution.
*4: Each scan time extends by 0.8 ms . At least 1 sec is required until the ASI command takes effect.
Note: Specify the slave address in the data register as shown in the table below:

Slave Address	Data Register Value		Slave Address	Data Register Value	
	Hexadecimal	Decimal		Hexadecimal	Decimal
O(A)	00 h	0	-	-	-
1(A)	01 h	1	1 B	21 h	33
2(A)	02 h	2	2 B	22 h	34
I	\mid	\mid	\mid	\mid	\mid
31(A)	1 Fh	31	31 B	3 Fh	63

Request and Result Codes

D1945 Value Low Byte	Description	Note
00h	Initial value at power up	While D1945 lower byte stores 01h, 02h, or 08h, do not write any value to D1945, otherwise the ASI command is not executed correctly. The CPU module stores all values automatically, except for 01 h .
01h	Request	
02h	Processing ASI command	
04h	Completed normally	
08h	(Executing configuration)	
14h	Peripheral device failure	
24h	ASI command error	
74h	Impossible to execute	
84h	Execution resulting in error	

Sample Program: Change Slave PI

This sample program changes the PI value of slave 1A to 3 . To use the ASI command Change Slave PI, store new parameter value 3 to D1943 and 1 to D1944 to designate the slave address using the MACRO instruction on WindLDR.

Program	Command Data (Hexadecimal)				
	D1941	D1942	D1943	D1944	D1945
Write PI parameter "3" to slave 1A	0306	0102	0003	0001	0001

To designate slave 31A, set 001F to D1944. For slave 1B, set 0021.
Parameters P3 through P0 are weighted as shown in the table below. When the P1 parameter is set to $3, \mathrm{P} 3$ and P2 are turned off, and P1 and P0 are turned on.

Parameter	P3	P2	P1	P0
Weight	8	4	2	1
ON/OFF	OFF	OFF	ON	ON

When input 10 turns on, the MACRO instruction stores hexadecimal values 0306, 0102, 0003, 0001, and 0001 to five data registers D1941 through D1945.

Constant (Hexadecimal)
Hexadecimal
03060102000300010001 OK Cancel

Using Two AS-Interface Master Modules

The FC5A MicroSmart CPU modules can be used with one or two AS-Interface master modules. For the first AS-Interface master module, which is mounted closer to the CPU module, the AS-Interface objects can be accessed through the ASInterface devices, such as internal relays M1300 through M1997 and data registers D1700 through D1999 as shown on page 24-19.

- While performing master configuration or slave monitoring for AS-Interface master module 2 using WindLDR, RUNA and STPA instructions for AS-Interface master module 2 cannot be executed.
- ASI commands cannot be used for AS-Interface master module 2. Use pushbuttons PB1 and PB2 on the AS-Interface master module to go to Normal Protected Mode, Normal Protected Offline, and Normal Protected Data Exchange Off.
- AS-Interface master module 2 does not have the function to change ID1 code of slave 1 and enable/disable auto addressing. Auto addressing is always enabled.

Accessing AS-Interface Objects for AS-Interface Master Module 2

The I/O data and parameters of slaves on the AS-Interface bus, the status of the AS-Interface bus, and various list information of the slaves are allocated to the AS-Interface master module EEPROM. This information is called AS-Interface objects. The AS-Interface objects for the second AS-Interface master module can be assigned to any internal relays and data registers and accessed using RUNA or STPA instructions.

The data addresses for AS-Interface master module 2 are shown in the table below.

AS-Interface Master Module 2		Precessing Time (ms) ${ }^{* 1}$	Read/Write	AS-Interface Master Module EEPROM
Device Address	Data Size (bytes)			AS-Interface Object
0	32	3.0	R	Digital input (IDI: input data image)
3	32	3.0	W	Digital output (ODI: output data image)
2	6	1.0	R	Status information
1	64	5.2	R	Analog input
4	64	5.2	W	Analog output
9	24	3.0	R	List of active slaves (LAS) List of detected slaves (LDS) List of peripheral fault slaves (LPF)
-	-	-	-	List of projected slaves (LPS) ${ }^{* 2}$
-	-	-	-	Configuration data image A (CDI) ${ }^{*}$
-	-	-	-	Configuration data image B (CDI) ${ }^{2}$
-	-	-	-	Permanent configuration data $\mathrm{A}(\mathrm{PCD})^{* 2}$
-	-	-	-	Permanent configuration data $\mathrm{B}(\mathrm{PCD})^{* 2}$
-	-	-	-	Parameter image (PI) ${ }^{*}$
-	-	-	-	Permanent parameter (PP) ${ }^{* 2}$
-	-	-	-	Slave 0 ID1 code
-	-	-	-	ASI command description

*1: The time required for the CPU module to update the device data for RUNA or STPA instruction. For example, when reading IDI, ODI, status information, LAS, LDS, and LPF continuously in every scan, the scan time increases by 10 ms .
*2: These AS-Interface device data can be read or written using WindLDR. For details, see page 24-34.

WindLDR Program to Access AS-Interface Objects for AS-Interface Master Module 2

The following example demonstrates to assign AS-Interface objects to internal relays using the RUNA instruction. Digital inputs (IDI), digital outputs (ODI), and status information are read to and written from internal relays.
Although not included in the sample program, analog inputs and analog outputs can also be assigned to data registers using RUNA or STPA instructions.

Like AS-Interface master module 1, other AS-Interface objects can be accessed using the Configure AS-Interface Master dialog box on WindLDR, such as the list of active slaves (LAS), list of detected slaves (LDS), list of peripheral fault slaves (LPF), list of projected slaves (LPS), configuration data image (CDI), permanent configuration data (PCD), parameter image (PI), and permanent parameter (PP).

Programming Procedure

1. Determine the AS-Interface objects to access and the MicroSmart devices to assign the AS-Interface objects.

AS-Interface Master Module 2		Read/Write	MicroSmart Device	AS-Interface Master Module EEPROM
Device Address	Data Size (bytes)			
0	32	R	M 200 to M517	Digital input (IDI)
3	32	W	M 520 to M837	Digital output (ODI)
2	6	R	M 840 to M897	Status information

2. Confirm the slot number where AS-Interface module 2 is mounted.

For the system setup of this sample program, see page 24-18.
Slots are numbered from 1 , in the order of increasing distance from the CPU module. All expansion modules are included in numbering the slots, such as digital I/O modules, analog I/O modules, and AS-Interface modules.

When IO is turned on, RUNA instructions are executed to read and write the designated data.

The RUNA WRITE instruction on the second line is programmed as shown below.

Using WindLDR

This section describes the procedures to use WindLDR for the AS-Interface system. WindLDR contains the Configure ASInterface Master dialog box to configure slaves and to change slave addresses, and the Monitor AS-Interface Slave dialog box to monitor the slave operation.

For the procedures to select the PLC type and Function Area Settings, see page 24-8.

Configure AS-Interface Master

AS-Interface compatible slave devices are set to address 0 at factory and must be assigned a unique slave address so that the master can communicate with the slave correctly.

From the WindLDR menu bar, select Online > Configure Master. The Configure AS-Interface Master dialog box appears.

Dialog Box	Button	Description
Configure AS-Interface Master	Auto Configuration	Writes the currently connected AS-Interface slave configuration (LDS, CDI, PI) information to the AS-Interface master module ROM (LPS, PCD, PP).
	Manual Configuration	Writes the slave PCD and parameters configured by the user to the AS- Interface master module ROM (LPS, PCD, PP).
	Refresh	Refreshes the screen display.
	Switch Slave	Switches the dialog box for setting Slave A or Slave B.
	File Open	Opens the configuration (LPS, PCD, PP) file.
	File Save	Saves the configuration (LPS, PCD, PP) file.
	Help	Displays explanations for functions on the screen.
Change Slave Address	OK	Changes the slave address.
	Cancel	Discards the changes and closes the window.
	OK	Updates the PCD and PP. Not written to the master module yet.
	Cancel	Discards the changes and closes the window.

Slave Address Shading Colors

Operating status of the slave can be confirmed by viewing the shading color at the slave address on the Configure ASInterface Master dialog box. The screen display can be updated by clicking the Refresh button.

Address Shading	Description	LAS List of active slaves	LDS List of detected slaves	LPF List of peripheral fault slaves	LPS List of projected slaves
No Shade	The slave is not recognized by the master.	OFF	OFF	OFF	ON/OFF
Blue Shade	The slave is active.	ON	ON	OFF	ON
Yellow Shade	The slave is recognized but not enabled to operate.	OFF	ON	OFF	OFF
Red Shade	An error was found in the slave.	ON/OFF	ON/OFF	ON	ON/OFF

Change Slave Address

When a slave is connected to the AS-Interface master module, the slave address can be changed using WindLDR.

!. Warning	- Duplicate slave addresses Each slave must have a unique address. Do not connect two or more slaves with the same address, otherwise the AS-Interface master module cannot locate the slave correctly. When two slaves have the same address and different identification codes (ID, I/O, ID2, ID1), the AS-Interface master mod- ule detects an error. When two slaves have the same address and same identification codes, the AS- Interface master module cannot detect an error. Failure to observe this warning may cause severe personal injury or heavy damage to property.

Caution

- When a slave with address 0 is connected to the AS-Interface master module, power up the MicroSmart CPU module first. Approximately 5 seconds later, turn on the AS-Interface power supply. If the CPU module and AS-Interface power supply are turned on at the same time, the AS-Interface master module enters normal protected offline. In this mode, slave addresses can be changed, but the slave status cannot be confirmed on WindLDR.

To change a slave address, from the WindLDR menu bar, select Online > Configure Master. The Configure AS-Interface Master dialog box appears.

Click a slave address to open the Change Slave Address dialog box. Select Slave A or Slave B, enter a required address in the New Address field, and click OK. The Change Slave Address dialog box is closed. The new slave address is stored in the slave module nonvolatile memory.

If the command is not processed correctly, the error message "AS-Interface Master Error" and an error code will appear. See page 24-38.
The address cannot be changed in the following cases.

Error Code	Description
1	- An error was found on the expansion I/O bus.
7	- The AS-Interface master module is in local mode.
8	- The slave you are trying to change does not exist. - A slave of the designated new address already exists. - While a standard slave was set at A address, attempt was made to set an A / B slave at B address of the same number. - While an A / B slave was set at B address, attempt was made to set a standard slave at A address of the same number.

Configuration

Before commissioning the AS-Interface master module, configuration must be done using either WindLDR or the pushbuttons on the front of the AS-Interface master module. This section describes the method of configuration using WindLDR. For configuration using the pushbuttons, see page 24-10. Configuration is the procedure to store the following information to the AS-Interface master module ROM.

- A list of slave addresses to be used
- Configuration data to specify slave types, or identification codes (ID, I/O, ID2, ID1)
- Parameters (P3, P2, P1, P0) to designate the slave operation at power-up

WindLDR provides two options for configuration: auto configuration to execute automatic configuration and manual configuration to execute configuration according to the data selected by the user.

Auto Configuration

Auto configuration stores the current slave configuration data (LDS, CDI, PI) to the AS-Interface master module ROM (LPS, PCD, PP). To execute auto configuration, press Auto Configuration in the Configure AS-Interface Master dialog box. Auto configuration has the same effect as the configuration using the pushbuttons on the AS-Interface master module.

| Slave Configuration Data | AS-Interface Master Module ROM |
| :--- | :--- | :--- |
| List of detected slaves (LDS)
 Configuration data image (CDI)
 Parameter image (PI) List of projected slaves (LPS)
 Permanent configuration data (PCD)
 Permanent parameter (PP) | |

Manual Configuration

Manual configuration is the procedure to write the LPS, PCD, and PP designated on WindLDR to the AS-Interface master module ROM. LPS is automatically generated by WindLDR based on

PCD	LPS
FFFFh	0
Other values	1

OK. At this point, the configuration data are not stored to the ASInterface master module ROM. To store the changes, click Manual Configuration on the Configure AS-Interface Master dialog box. The screen display of the Configure AS-Interface Master dialog box can be updated using Refresh.
If you save the configuration data to a file, you can open the file to configure other AS-Interface master modules using the same data. To save and open the configuration file, click File Save or File Open.

If the configuration command is not processed correctly, the error message "AS-Interface Master Error" and an error code will appear. See page 24-38.

If the error message "Configuration failure. Confirm the slave setup, and perform configuration again." is shown, and the FLT LED is on, then remove the cause of the error, referring to page 24-13, and repeat configuration.
The configuration cannot be done in the following cases.

Error Code	
$\mathbf{1}$	• An error was found on the expansion I/O bus.
$\mathbf{2}$	• While the AS-Interface master module was in offline mode, attempt was made to execute auto configu- ration or manual configuration.
$\mathbf{7}$	- While slave address 0 existed on the bus, attempt was made to execute auto configuration or manual configuration. - The AS-Interface master module is in local mode.

Monitor AS-Interface Slave

While the MicroSmart is communicating with AS-Interface slaves through the AS-Interface bus, operating status of ASInterface slaves can be monitored using WindLDR on a computer. Output statuses and parameter image (PI) can also be changed using WindLDR.

To open the Monitor AS-Interface Slaves dialog box, from the WindLDR menu bar, select Online $>$ Monitor, then select Online > Monitor Slaves.

Change Slave Output Statuses and Parameters

The output statuses and parameter image (PI) of the slaves connected to the AS-Interface master module can be changed. To open the Slave Status dialog box, click the output of a required slave address in the Monitor AS-Interface Slaves dialog box. Then, click the On or Off button to change the statuses of outputs DOO through DO3 and parameters PO through P3 as required. Click Store to save the changes to the slave module.
If the command is not processed correctly, the error message "AS-Interface Master Error" and an error code will appear. See page 24-38.

The output statuses and parameters cannot be changed in the following cases.

Error Code	
$\mathbf{1}$	\bullet An error was found on the expansion I/O bus.
$\mathbf{7}$	\bullet The AS-Interface master module is in local mode.
$\mathbf{8}$	\bullet Attempt was made to change the parameters of a slave which did not exist.

Error Messages

When an error is returned from the AS-Interface master module, WindLDR will display an error message. The error codes and their meanings are given below.

Configure AS-Interface Master X

$$
\text { AS-Interface Master Error ' } 8 \text { ' }
$$

Error Code	Description
$\mathbf{1}$	- An error was found on the expansion I/O bus.
$\mathbf{2}$	- While the AS-Interface master module was in offline mode, attempt was made to perform auto config- uration or manual configuration. - An incorrect command was sent.
$\mathbf{7}$	- While slave address 0 existed on the bus, attempt was made to perform auto configuration or manual configuration. - The AS-Interface master module is in local mode.
$\mathbf{8}$	- The slave you are trying to change does not exist. - A slave of the designated new address already exists. - While a standard slave was set at A address, attempt was made to set an A/B slave at B address of the same number. - While an A/B slave was set at B address, attempt was made to set a standard slave at A address of the same number. - Attempt was made to change the parameters of a slave which did not exist.

When a reply message is not returned from the AS-Interface master module, the following error message will be displayed.

Configure AS-Interface Master X
Reply Message Receive Timeout
\square

SwitchNet Data I/O Port (AS-Interface Master Module 1)

SwitchNet control units can be used as slaves in the AS-Interface network and are available in $\varnothing 16 \mathrm{~mm}$ L6 series and $\varnothing 22 \mathrm{~mm}$ HW series. Input signals to the MicroSmart AS-Interface master module are read to internal relays allocated to each input point designated by a slave number and a DI number. Similarly, output signals from the MicroSmart AS-Interface master module are written to internal relays allocated to each output point designated by a slave number and a DO number. When programming a ladder diagram for the MicroSmart, use internal relays allocated to input signals and output signals of SwitchNet control units.

L6 series and HW series SwitchNet control units have slightly different digital I/O data allocations.

L6 Series Digital I/O Data Allocation

Input data is sent from slaves to the AS-Interface master. Output data is sent from the AS-Interface master to slaves.

SwitchNet L6 Series Slave Unit	Used I/O	Input Data(slave send data)				Output Data(slave receive data)			
		DI3	DI2	DI1	DIO	DO3	DO2	DO1	DOO
Pushbutton	1 in	0	X1	1	1	*	-	-	-
Pilot light	1 out	0	0	1	1	*	-	-	X1
Illuminated pushbutton	$1 \mathrm{in} / 1$ out	0	X1	1	1	*	-	-	X1
Selector, Key selector, Lever: 2-position	1 in	0	X2	1	1	*	-	-	-
Selector, Key selector, Lever: 3-position	2 in	X3	X3	1	1	*	-	-	-
Illuminated selector: 2-position	$1 \mathrm{in} / 1$ out	0	X2	1	1	*	-	-	X1
Illuminated selector: 3-position	2 in/1 out	X3	X3	1	1	*	-	-	X1

Notes:

1. * The AS-Interface master uses bit DO3 for addressing A / B slaves.
2. In the above table, bits marked with $\mathrm{X} 1, \mathrm{X} 2$, and X 3 are used for SwitchNet I/O data.
3. X 1 : When pushbutton is pressed, input data is 1 (on). When not pressed, input data is 0 (off). When output data is 1 (on), LED is on. When output data is 0 (off), LED is off.
4. X2: The input data from 2-position selector, key selector, and illuminated selector switches and 2-position lever switches depend on the operator position as shown below.

	Selector	
2-position Operator	Left	Lever
	Left/Down	Right/Up
Operator Position	0	1
DI2		

5. X3: The input data from 3-position selector, key selector, and illuminated selector switches and 3-position lever switches depend on the operator position as shown below.

	Selector		
3-position Operator	Left		
	Lenter		
Operator Position	Left/Down	Center	Right/Up
DI3	0	0	1
DI2	1	0	0

6. Unused input bits DI3 and DI2 are 0 (off), and unused input bits DI1 and DIO are 1 (on). Slaves ignore unused output data (-) sent from the master.

- Write Parameter Command

- Write_Parameter Settings

LED Brightness	Settings			Remarks
	Output Selection	Control Data		
	P2	P1	PO	
100\%	$\begin{aligned} & \text { 1: DOO } \\ & \text { 0: DO1 } \end{aligned}$	1	1	Default
50\%		0	1	
25\%		1	0	
12.5\%		0	0	

HW Series Digital I/O Data Allocation

Input data is sent from slaves to the AS-Interface master. Output data is sent from the AS-Interface master to slaves.

SwitchNet HW Series Slave Unit	Used I/O	Communication Block Mounting Position	Input Data (slave send data)				Output Data (slave receive data)			
			DI3	DI2	DI1	DIO	DO3	DO2	D01	DOO
Pushbutton	1 in	(2)	0	X1	1	1	*	-	-	-
Pilot light	1 out	(2)	0	0	1	1	*	-	-	X1
Illuminated pushbutton	$1 \mathrm{in} / 1$ out	(2)	0	X1	1	1	*	-	-	X1
Selector, Key selector: 2-position	1 in	(2)	0	X2	1	1	*	-	-	-
Selector, Key selector: 3-position	1 in	(1)	0	X3	1	1	*	-	-	-
	1 in	(2)	0	X3	1	1	*	-	-	-
Illuminated selector: 2-position	$1 \mathrm{in} / 1$ out	(2)	0	X2	1	1	*	-	-	X1
Illuminated selector: 3-position	1 in	(1)	0	X3	1	1	*	-	-	-
	$1 \mathrm{in} / 1$ out	(2)	0	X3	1	1	*	-	-	X1

Notes:

1. * The AS-Interface master uses bit DO3 for addressing A / B slaves.
2. In the above table, bits marked with $\mathrm{X} 1, \mathrm{X} 2$, and X 3 are used for SwitchNet I/O data.
3. X 1 : When pushbutton is pressed, input data is 1 (on). When not pressed, input data is 0 (off). When output data is 1 (on), LED is on. When output data is 0 (off), LED is off.
4. X2: The input data from 2-position selector, key selector, and illuminated selector switches depend on the operator position as shown below.

	Left	
2-position Operator		
Operator Position	Left	Right
DI2	0	1

5. X3: The input data from 3-position selector, key selector, and illuminated selector switches depend on the operator position as shown below.

						Selector 3-position Operator Center Operator Position			Left	Center	Right
Communication Block Mounting Position	Input Data Bit										
(1)	DI2	1	0	0							
(2)	DI2	0	0	1							

As shown in the table and figure, 3-position selector, key selector, and illuminated selector switches use two communication blocks. Each communication block must have a unique address, therefore the 3 -position selectors require 2 slave addresses.
6. Unused input bits DI3 and DI2 are 0 (off), and unused input bits DI1 and DIO are 1 (on). Slaves ignore unused output data (-) sent from the master.

Communication Block Mounting Position
(Rear View)

On 3-position selector, key selector, and illuminated selector switches, communication blocks (1) and (2) are mounted in positions shown above.

- Write Parameter Command

- Write_Parameter Settings

LED Brightness	Settings			Remarks
	Output Selection	Control Data		
	P2	P1	PO	
100\%	$\begin{aligned} & \text { 1: DOO } \\ & \text { 0: DO1 } \end{aligned}$	1	1	Default
50\%		0	1	
25\%		1	0	
12.5\%		0	0	

- Internal Relays for SwitchNet Slaves (AS-Interface Master Module 1)

L6 Series

Slave Number	Pushbutton Input DI2	$\begin{gathered} \text { Pilot Light } \\ \hline \text { Output DOO } \\ \hline \end{gathered}$	Illuminated Pushbutton		Selector, Key selector, Lever: 2-position Input DI2
			Input DI2	Output DOO	
(Slave 0)	M1302	M1620	M1302	M1620	M1302
Slave 1(A)	M1306	M1624	M1306	M1624	M1306
Slave 2(A)	M1312	M1630	M1312	M1630	M1312
Slave 3(A)	M1316	M1634	M1316	M1634	M1316
Slave 4(A)	M1322	M1640	M1322	M1640	M1322
Slave 5(A)	M1326	M1644	M1326	M1644	M1326
Slave 6(A)	M1332	M1650	M1332	M1650	M1332
Slave 7(A)	M1336	M1654	M1336	M1654	M1336
Slave 8(A)	M1342	M1660	M1342	M1660	M1342
Slave 9(A)	M1346	M1664	M1346	M1664	M1346
Slave 10(A)	M1352	M1670	M1352	M1670	M1352
Slave 11(A)	M1356	M1674	M1356	M1674	M1356
Slave 12(A)	M1362	M1680	M1362	M1680	M1362
Slave 13(A)	M1366	M1684	M1366	M1684	M1366
Slave 14(A)	M1372	M1690	M1372	M1690	M1372
Slave 15(A)	M1376	M1694	M1376	M1694	M1376
Slave 16(A)	M1382	M1700	M1382	M1700	M1382
Slave 17(A)	M1386	M1704	M1386	M1704	M1386
Slave 18(A)	M1392	M1710	M1392	M1710	M1392
Slave 19(A)	M1396	M1714	M1396	M1714	M1396
Slave 20(A)	M1402	M1720	M1402	M1720	M1402
Slave 21(A)	M1406	M1724	M1406	M1724	M1406
Slave 22(A)	M1412	M1730	M1412	M1730	M1412
Slave 23(A)	M1416	M1734	M1416	M1734	M1416
Slave 24(A)	M1422	M1740	M1422	M1740	M1422
Slave 25(A)	M1426	M1744	M1426	M1744	M1426
Slave 26(A)	M1432	M1750	M1432	M1750	M1432
Slave 27(A)	M1436	M1754	M1436	M1754	M1436
Slave 28(A)	M1442	M1760	M1442	M1760	M1442
Slave 29(A)	M1446	M1764	M1446	M1764	M1446
Slave 30(A)	M1452	M1770	M1452	M1770	M1452
Slave 31(A)	M1456	M1774	M1456	M1774	M1456
Slave 1B	M1466	M1784	M1466	M1784	M1466
Slave 2B	M1472	M1790	M1472	M1790	M1472
Slave 3B	M1476	M1794	M1476	M1794	M1476
Slave 4B	M1482	M1800	M1482	M1800	M1482
Slave 5B	M1486	M1804	M1486	M1804	M1486
Slave 6B	M1492	M1810	M1492	M1810	M1492
Slave 7B	M1496	M1814	M1496	M1814	M1496
Slave 8B	M1502	M1820	M1502	M1820	M1502
Slave 9B	M1506	M1824	M1506	M1824	M1506
Slave 10B	M1512	M1830	M1512	M1830	M1512
Slave 11B	M1516	M1834	M1516	M1834	M1516
Slave 12B	M1522	M1840	M1522	M1840	M1522
Slave 13B	M1526	M1844	M1526	M1844	M1526
Slave 14B	M1532	M1850	M1532	M1850	M1532
Slave 15B	M1536	M1854	M1536	M1854	M1536
Slave 16B	M1542	M1860	M1542	M1860	M1542
Slave 17B	M1546	M1864	M1546	M1864	M1546
Slave 18B	M1552	M1870	M1552	M1870	M1552
Slave 19B	M1556	M1874	M1556	M1874	M1556
Slave 20B	M1562	M1880	M1562	M1880	M1562
Slave 21B	M1566	M1884	M1566	M1884	M1566
Slave 22B	M1572	M1890	M1572	M1890	M1572
Slave 23B	M1576	M1894	M1576	M1894	M1576
Slave 24B	M1582	M1900	M1582	M1900	M1582
Slave 25B	M1586	M1904	M1586	M1904	M1586
Slave 26B	M1592	M1910	M1592	M1910	M1592
Slave 27B	M1596	M1914	M1596	M1914	M1596
Slave 28B	M1602	M1920	M1602	M1920	M1602
Slave 29B	M1606	M1924	M1606	M1924	M1606
Slave 30B	M1612	M1930	M1612	M1930	M1612
Slave 31B	M1616	M1934	M1616	M1934	M1616

fC5A MicroSmart User's Manual FC9Y-B1273

L6 Series (continued)

Slave Number	Selector, Key selector, Lever: 3-position		Illuminated selector: 2-position		Illuminated selector: 3-position		
	Input DI3	Input DI2	Input DI2	Output DOO	Input DI3	Input DI2	Output DOO
(Slave 0)	M1303	M1302	M1302	M1620	M1303	M1302	M1620
Slave 1(A)	M1307	M1306	M1306	M1624	M1307	M1306	M1624
Slave 2(A)	M1313	M1312	M1312	M1630	M1313	M1312	M1630
Slave 3(A)	M1317	M1316	M1316	M1634	M1317	M1316	M1634
Slave 4(A)	M1323	M1322	M1322	M1640	M1323	M1322	M1640
Slave 5(A)	M1327	M1326	M1326	M1644	M1327	M1326	M1644
Slave 6(A)	M1333	M1332	M1332	M1650	M1333	M1332	M1650
Slave 7(A)	M1337	M1336	M1336	M1654	M1337	M1336	M1654
Slave 8(A)	M1343	M1342	M1342	M1660	M1343	M1342	M1660
Slave 9(A)	M1347	M1346	M1346	M1664	M1347	M1346	M1664
Slave 10(A)	M1353	M1352	M1352	M1670	M1353	M1352	M1670
Slave 11(A)	M1357	M1356	M1356	M1674	M1357	M1356	M1674
Slave 12(A)	M1363	M1362	M1362	M1680	M1363	M1362	M1680
Slave 13(A)	M1367	M1366	M1366	M1684	M1367	M1366	M1684
Slave 14(A)	M1373	M1372	M1372	M1690	M1373	M1372	M1690
Slave 15(A)	M1377	M1376	M1376	M1694	M1377	M1376	M1694
Slave 16(A)	M1383	M1382	M1382	M1700	M1383	M1382	M1700
Slave 17(A)	M1387	M1386	M1386	M1704	M1387	M1386	M1704
Slave 18(A)	M1393	M1392	M1392	M1710	M1393	M1392	M1710
Slave 19(A)	M1397	M1396	M1396	M1714	M1397	M1396	M1714
Slave 20(A)	M1403	M1402	M1402	M1720	M1403	M1402	M1720
Slave 21(A)	M1407	M1406	M1406	M1724	M1407	M1406	M1724
Slave 22(A)	M1413	M1412	M1412	M1730	M1413	M1412	M1730
Slave 23(A)	M1417	M1416	M1416	M1734	M1417	M1416	M1734
Slave 24(A)	M1423	M1422	M1422	M1740	M1423	M1422	M1740
Slave 25(A)	M1427	M1426	M1426	M1744	M1427	M1426	M1744
Slave 26(A)	M1433	M1432	M1432	M1750	M1433	M1432	M1750
Slave 27(A)	M1437	M1436	M1436	M1754	M1437	M1436	M1754
Slave 28(A)	M1443	M1442	M1442	M1760	M1443	M1442	M1760
Slave 29(A)	M1447	M1446	M1446	M1764	M1447	M1446	M1764
Slave 30(A)	M1453	M1452	M1452	M1770	M1453	M1452	M1770
Slave 31(A)	M1457	M1456	M1456	M1774	M1457	M1456	M1774
Slave 1B	M1467	M1466	M1466	M1784	M1467	M1466	M1784
Slave 2B	M1473	M1472	M1472	M1790	M1473	M1472	M1790
Slave 3B	M1477	M1476	M1476	M1794	M1477	M1476	M1794
Slave 4B	M1483	M1482	M1482	M1800	M1483	M1482	M1800
Slave 5B	M1487	M1486	M1486	M1804	M1487	M1486	M1804
Slave 6B	M1493	M1492	M1492	M1810	M1493	M1492	M1810
Slave 7B	M1497	M1496	M1496	M1814	M1497	M1496	M1814
Slave 8B	M1503	M1502	M1502	M1820	M1503	M1502	M1820
Slave 9B	M1507	M1506	M1506	M1824	M1507	M1506	M1824
Slave 10B	M1513	M1512	M1512	M1830	M1513	M1512	M1830
Slave 11B	M1517	M1516	M1516	M1834	M1517	M1516	M1834
Slave 12B	M1523	M1522	M1522	M1840	M1523	M1522	M1840
Slave 13B	M1527	M1526	M1526	M1844	M1527	M1526	M1844
Slave 14B	M1533	M1532	M1532	M1850	M1533	M1532	M1850
Slave 15B	M1537	M1536	M1536	M1854	M1537	M1536	M1854
Slave 16B	M1543	M1542	M1542	M1860	M1543	M1542	M1860
Slave 17B	M1547	M1546	M1546	M1864	M1547	M1546	M1864
Slave 18B	M1553	M1552	M1552	M1870	M1553	M1552	M1870
Slave 19B	M1557	M1556	M1556	M1874	M1557	M1556	M1874
Slave 20B	M1563	M1562	M1562	M1880	M1563	M1562	M1880
Slave 21B	M1567	M1566	M1566	M1884	M1567	M1566	M1884
Slave 22B	M1573	M1572	M1572	M1890	M1573	M1572	M1890
Slave 23B	M1577	M1576	M1576	M1894	M1577	M1576	M1894
Slave 24B	M1583	M1582	M1582	M1900	M1583	M1582	M1900
Slave 25B	M1587	M1586	M1586	M1904	M1587	M1586	M1904
Slave 26B	M1593	M1592	M1592	M1910	M1593	M1592	M1910
Slave 27B	M1597	M1596	M1596	M1914	M1597	M1596	M1914
Slave 28B	M1603	M1602	M1602	M1920	M1603	M1602	M1920
Slave 29B	M1607	M1606	M1606	M1924	M1607	M1606	M1924
Slave 30B	M1613	M1612	M1612	M1930	M1613	M1612	M1930
Slave 31B	M1617	M1616	M1616	M1934	M1617	M1616	M1934

HW Series

Slave Number	Pushbutton	Pilot Light	Illuminated Pushbutton		Selector, Key selector: 2-position Input DI2
	Input D12	Output DOO	Input DI2	Output DOO	
(Slave 0)	M1302	M1620	M1302	M1620	M1302
Slave 1(A)	M1306	M1624	M1306	M1624	M1306
Slave 2(A)	M1312	M1630	M1312	M1630	M1312
Slave 3(A)	M1316	M1634	M1316	M1634	M1316
Slave 4(A)	M1322	M1640	M1322	M1640	M1322
Slave 5(A)	M1326	M1644	M1326	M1644	M1326
Slave 6(A)	M1332	M1650	M1332	M1650	M1332
Slave 7(A)	M1336	M1654	M1336	M1654	M1336
Slave 8(A)	M1342	M1660	M1342	M1660	M1342
Slave 9(A)	M1346	M1664	M1346	M1664	M1346
Slave 10(A)	M1352	M1670	M1352	M1670	M1352
Slave 11(A)	M1356	M1674	M1356	M1674	M1356
Slave 12(A)	M1362	M1680	M1362	M1680	M1362
Slave 13(A)	M1366	M1684	M1366	M1684	M1366
Slave 14(A)	M1372	M1690	M1372	M1690	M1372
Slave 15(A)	M1376	M1694	M1376	M1694	M1376
Slave 16(A)	M1382	M1700	M1382	M1700	M1382
Slave 17(A)	M1386	M1704	M1386	M1704	M1386
Slave 18(A)	M1392	M1710	M1392	M1710	M1392
Slave 19(A)	M1396	M1714	M1396	M1714	M1396
Slave 20(A)	M1402	M1720	M1402	M1720	M1402
Slave 21(A)	M1406	M1724	M1406	M1724	M1406
Slave 22(A)	M1412	M1730	M1412	M1730	M1412
Slave 23(A)	M1416	M1734	M1416	M1734	M1416
Slave 24(A)	M1422	M1740	M1422	M1740	M1422
Slave 25(A)	M1426	M1744	M1426	M1744	M1426
Slave 26(A)	M1432	M1750	M1432	M1750	M1432
Slave 27(A)	M1436	M1754	M1436	M1754	M1436
Slave 28(A)	M1442	M1760	M1442	M1760	M1442
Slave 29(A)	M1446	M1764	M1446	M1764	M1446
Slave 30(A)	M1452	M1770	M1452	M1770	M1452
Slave 31(A)	M1456	M1774	M1456	M1774	M1456
Slave 1B	M1466	M1784	M1466	M1784	M1466
Slave 2B	M1472	M1790	M1472	M1790	M1472
Slave 3B	M1476	M1794	M1476	M1794	M1476
Slave 4B	M1482	M1800	M1482	M1800	M1482
Slave 5B	M1486	M1804	M1486	M1804	M1486
Slave 6B	M1492	M1810	M1492	M1810	M1492
Slave 7B	M1496	M1814	M1496	M1814	M1496
Slave 8B	M1502	M1820	M1502	M1820	M1502
Slave 9B	M1506	M1824	M1506	M1824	M1506
Slave 10B	M1512	M1830	M1512	M1830	M1512
Slave 11B	M1516	M1834	M1516	M1834	M1516
Slave 12B	M1522	M1840	M1522	M1840	M1522
Slave 13B	M1526	M1844	M1526	M1844	M1526
Slave 14B	M1532	M1850	M1532	M1850	M1532
Slave 15B	M1536	M1854	M1536	M1854	M1536
Slave 16B	M1542	M1860	M1542	M1860	M1542
Slave 17B	M1546	M1864	M1546	M1864	M1546
Slave 18B	M1552	M1870	M1552	M1870	M1552
Slave 19B	M1556	M1874	M1556	M1874	M1556
Slave 20B	M1562	M1880	M1562	M1880	M1562
Slave 21B	M1566	M1884	M1566	M1884	M1566
Slave 22B	M1572	M1890	M1572	M1890	M1572
Slave 23B	M1576	M1894	M1576	M1894	M1576
Slave 24B	M1582	M1900	M1582	M1900	M1582
Slave 25B	M1586	M1904	M1586	M1904	M1586
Slave 26B	M1592	M1910	M1592	M1910	M1592
Slave 27B	M1596	M1914	M1596	M1914	M1596
Slave 28B	M1602	M1920	M1602	M1920	M1602
Slave 29B	M1606	M1924	M1606	M1924	M1606
Slave 30B	M1612	M1930	M1612	M1930	M1612
Slave 31B	M1616	M1934	M1616	M1934	M1616

HW Series (continued)

Slave Number	Selector, Key selector: 3-position	Illuminated selector: 2-position		Illuminated selector: 3-position	
	Input DI2 (Comm. Block (1)(2))	Input DI2	Output DOO	Input DI2 (Comm. Block (1)(2))	Output DOO (Comm. Block (2))
(Slave 0)	M1302	M1302	M1620	M1302	M1620
Slave 1(A)	M1306	M1306	M1624	M1306	M1624
Slave 2(A)	M1312	M1312	M1630	M1312	M1630
Slave 3(A)	M1316	M1316	M1634	M1316	M1634
Slave 4(A)	M1322	M1322	M1640	M1322	M1640
Slave 5(A)	M1326	M1326	M1644	M1326	M1644
Slave 6(A)	M1332	M1332	M1650	M1332	M1650
Slave 7(A)	M1336	M1336	M1654	M1336	M1654
Slave 8(A)	M1342	M1342	M1660	M1342	M1660
Slave 9(A)	M1346	M1346	M1664	M1346	M1664
Slave 10(A)	M1352	M1352	M1670	M1352	M1670
Slave 11(A)	M1356	M1356	M1674	M1356	M1674
Slave 12(A)	M1362	M1362	M1680	M1362	M1680
Slave 13(A)	M1366	M1366	M1684	M1366	M1684
Slave 14(A)	M1372	M1372	M1690	M1372	M1690
Slave 15(A)	M1376	M1376	M1694	M1376	M1694
Slave 16(A)	M1382	M1382	M1700	M1382	M1700
Slave 17(A)	M1386	M1386	M1704	M1386	M1704
Slave 18(A)	M1392	M1392	M1710	M1392	M1710
Slave 19(A)	M1396	M1396	M1714	M1396	M1714
Slave 20(A)	M1402	M1402	M1720	M1402	M1720
Slave 21(A)	M1406	M1406	M1724	M1406	M1724
Slave 22(A)	M1412	M1412	M1730	M1412	M1730
Slave 23(A)	M1416	M1416	M1734	M1416	M1734
Slave 24(A)	M1422	M1422	M1740	M1422	M1740
Slave 25(A)	M1426	M1426	M1744	M1426	M1744
Slave 26(A)	M1432	M1432	M1750	M1432	M1750
Slave 27(A)	M1436	M1436	M1754	M1436	M1754
Slave 28(A)	M1442	M1442	M1760	M1442	M1760
Slave 29(A)	M1446	M1446	M1764	M1446	M1764
Slave 30(A)	M1452	M1452	M1770	M1452	M1770
Slave 31(A)	M1456	M1456	M1774	M1456	M1774
Slave 1B	M1466	M1466	M1784	M1466	M1784
Slave 2B	M1472	M1472	M1790	M1472	M1790
Slave 3B	M1476	M1476	M1794	M1476	M1794
Slave 4B	M1482	M1482	M1800	M1482	M1800
Slave 5B	M1486	M1486	M1804	M1486	M1804
Slave 6B	M1492	M1492	M1810	M1492	M1810
Slave 7B	M1496	M1496	M1814	M1496	M1814
Slave 8B	M1502	M1502	M1820	M1502	M1820
Slave 9B	M1506	M1506	M1824	M1506	M1824
Slave 10B	M1512	M1512	M1830	M1512	M1830
Slave 11B	M1516	M1516	M1834	M1516	M1834
Slave 12B	M1522	M1522	M1840	M1522	M1840
Slave 13B	M1526	M1526	M1844	M1526	M1844
Slave 14B	M1532	M1532	M1850	M1532	M1850
Slave 15B	M1536	M1536	M1854	M1536	M1854
Slave 16B	M1542	M1542	M1860	M1542	M1860
Slave 17B	M1546	M1546	M1864	M1546	M1864
Slave 18B	M1552	M1552	M1870	M1552	M1870
Slave 19B	M1556	M1556	M1874	M1556	M1874
Slave 20B	M1562	M1562	M1880	M1562	M1880
Slave 21B	M1566	M1566	M1884	M1566	M1884
Slave 22B	M1572	M1572	M1890	M1572	M1890
Slave 23B	M1576	M1576	M1894	M1576	M1894
Slave 24B	M1582	M1582	M1900	M1582	M1900
Slave 25B	M1586	M1586	M1904	M1586	M1904
Slave 26B	M1592	M1592	M1910	M1592	M1910
Slave 27B	M1596	M1596	M1914	M1596	M1914
Slave 28B	M1602	M1602	M1920	M1602	M1920
Slave 29B	M1606	M1606	M1924	M1606	M1924
Slave 30B	M1612	M1612	M1930	M1612	M1930
Slave 31B	M1616	M1616	M1934	M1616	M1934

Note: Three-position selector, key selector, and illuminated selector switches use two communication blocks, therefore require two slave addresses. For the communication block mounting position, see page 24-40.

25: Expansion RS232C/RS485 Communication

Introduction

This chapter describes communication examples using the FC5A-SIF2 expansion RS232C communication module and FC5A-SIF4 expansion RS485 communication module.

For specifications of the expansion RS232C/RS485 communication modules, see page 2-86 (Basic Vol.).

Applicable CPU Modules

| FC5A-C10R2/C/D | FC5A-C16R2/C/D
 FC5A-C24R2D | FC5A-C24R2/C | FC5A-D16RK1/RS1 | FC5A-D32K3/S3 | FC5A-D12K1E/S1E |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - | - | 3 (Note) | 5 | 5 | 5 |

CPU module system program version 110 or higher is required to use the FC5A-SIF2 expansion RS232C communication module. CPU module system program version 220 or higher is required to use the FC5A-SIF4 expansion RS485 communication module. The system program version can be confirmed using WindLDR. See page 13-2 (Basic Vol.).

When the CPU module system program version is lower than the required version, you can download the latest system program using WindLDR. See page A-9 (Basic Vol.).

Note: The all-in-one 24-I/O type CPU module cannot use the expansion RS232C/RS485 communication module in combination with function modules listed below. When using the expansion RS232C/RS485 communication module and these function modules, use the slim type CPU module.

Function Module	Type No.
Analog I/O Module	FC4A-L03A1, FC4A-L03AP1, FC4A-J2A1, FC4A-J4CN1, FC4A-J8C1, FC4A-J8AT1, FC4A-K1A1, FC4A-K2C1,
	FC4A-K4A1
AS-Interface Master Module	FC4A-AS62M

Allocating Communication Port Number

When expansion RS232C/RS485 communication modules are mounted, port number starts with port 3 and ends with port 7 when a maximum of five expansion RS232C/RS485 communication modules are mounted.

Example:

When five expansion RS232C communication modules and two I/O modules are mounted, the communication port numbers allocated as shown below.

Computer Link Communication

The computer link communication can be used with WindLDR on a PC connected to the CPU module to perform maintenance operations, such as download/upload user programs, start/stop the PLC, monitor the PLC status, and read/write device values. When the expansion RS232C/RS485 communication module is mounted to the CPU module in a computer link system, the computer link communication functions can be performed, except for Run-Time Program Download. For details about the computer link communication, see pages 4-1 (Basic Vol.) and 21-1.

System Setup Example

Note: Run-Time Program Download cannot be used through the expansion RS232C/RS485 communication module.
Note: When expansion RS485 communication module is used, connect a PC and the CPU module using a USB/RS485 converter from third party.

Cable Connection and Pinouts (FC5A-SIF2 Expansion RS232C Communication Module)

FC5A-SIF2		Compu	(D-sub 9-pin)
Terminal	..	Pin	Description
RS (RTS)		8	CS
ER (DTR)		3	SD
SD (TXD)	$\xrightarrow{\square}$	2	RD
RD (RXD)	↔ >	4	ER
DR (DSR)	\longrightarrow	6	DR
SG (SG)	\longrightarrow	1	CD
NC		5	SG
今		Cover	FG
$\stackrel{ }{-}$	Shield	7	RS
$\stackrel{\text { - }}{ }$		9	RI

Cable Connection and Pinouts (FC5A-SIF4 Expansion RS485 Communication Module)

Expansion RS232C/RS485 Communication Module Communication Parameter Range

Parameter	Optional Range	Default
Communication Mode	Maintenance communication	
Baud Rate (bps)	$1200,2400,4800,9600,19200,38400,57600,115200$ (Note)	9600
Data Bits	7 or 8	7
Parity	Even, Odd, None	Even
Stop Bits	1 or 2	1
Receive Timeout (ms)	10 to 2550 (10-ms increments) (Receive timeout is disabled when 0 is selected.)	
Network Number	0 to 31	500
Mode Selection Input	Any input number	0

Note: To use 57600 or 115200 bps, the CPU modules with system program version 220 or higher and FC5A-SIF2 (version 200 or higher) or FC5A-SIF4 are required.

Notes:

- When downloading or uploading the user program, set the transfer mode to ASCII.
- To download or upload the user program, CPU modules with system program version 220 or higher and FC5A-SIF4 are required.
- Run-Time Program Download cannot be used on port 3 through port 7.

Computer Link Communication through the Expansion RS232C/RS485 Communication Module

To perform the computer link communication using the expansion RS232C/RS485 communication module, a user program has to be downloaded through port 1 or 2 in the 1:1 computer link system as shown on page 25-2. After downloading the user program to the CPU module, the operating statuses of the CPU module can be monitored using WindLDR on the PC connected to the expansion RS232C/RS485 communication module.

The operating procedures for computer link communication using expansion RS232C/RS485 communication module are as follows:

1. Connect the PC to communication port 1 or 2 (RS232C) on the CPU module using the computer link cable 4C (FC2A-KC4C).
2. From the WindLDR menu bar, select Configuration > Comm. Ports.

The Function Area Settings dialog box for Communication Ports appears.
3. In the Communication Mode pull-down list for Port 3 through Port 7, select Maintenance Protocol.

4. The Communication Parameters dialog box appears. Change settings, if required.

Maintenance Protocol (Port3) X		Baud Rate (bps)	$\begin{aligned} & 1200,2400,4800,9600,19200,38400, \\ & 57600,115200 \end{aligned}$
Baud Rate (bps):	$9600 \quad \square$		
Data Bits:	7 -	Data Bits	7 or 8
Parity:	Even \quad	Parity	Even, Odd, None
Stop Bits:	\square	Stop Bits	1 or 2
Receive Timeout (ms): Network Number: Mode Selection Input:	500 目 0 田	Receive Timeout (ms)	10 to 2550 (10-ms increments) (Receive timeout is disabled when 0 is selected.)
		Network Number	0 to 31
OK Cancel	Default	Mode Selection Input	Any input number

Note: When a mode selection input has been designated and the mode selection input is turned on, the selected communication parameters are enabled. When communication parameters are changed without designating a mode selection input, the changed communication parameters take effect immediately when the user program is downloaded.
5. Click the $\mathbf{O K}$ button to save changes.

The Communication Parameters dialog box closes and the Communication Ports page becomes active.
6. Click the OK button to save changes to the Function Area Settings.

The Function Area Settings dialog box closes and the ladder editing screen becomes active.
Next, download the user program through port 1 or 2 to the CPU module.
7. From the WindLDR menu bar, select Online > Download.

The Download dialog box appears,

8. Click the $\mathbf{O K}$ button.

The user program is downloaded to the CPU module.
Note: When downloading a user program, all values and selections in the Function Area Settings are also downloaded to the CPU module.
9. Connect the PC to communication port 3 through port 7 on the expansion RS232C/RS485 communication module. For terminal arrangement and wiring diagram, see page 2-89 and 2-90 (Basic Vol.).
10. Start WindLDR on the PC connected to the expansion RS232C/RS485 communication module.
11. From the WindLDR menu bar, select Online > Monitor > Monitor.

The monitor screen appears, and you can monitor the MicroSmart operating statuses and change device values.

Operator Interface Communication

Using the expansion RS232C/RS485 communication module, the MicroSmart can communicate with IDEC's HG series operator interfaces. To connect the HG series operator interface to the expansion RS232C/RS485 communication module, use a communication cable prepared by the user.

For details about the communication settings and specifications, see the HG series operator interface user's manual.

System Setup Example

Note: Run-User programs cannot be downloaded and uploaded through the expansion RS232C communication module.

Applicable Operator Interfaces	HG2G, HG1F, HG2F, HG3F, HG4F, HG2S (HG series operator interfaces applicable to port 1 through port 7 can be used.)

Cable Connection and Pinouts (RS232C)

FC5A-SIF2		HG series Operator Interface					
		Pin					Description
Terminal		HG3G (Connector)	HG2G/HG3G (Terminal Block)	HG1F	$\begin{gathered} \hline \mathrm{HG} 2 \mathrm{~F} / \\ 3 \mathrm{~F} / 4 \mathrm{~F} \end{gathered}$	HG2S	
RS (RTS)		-	-	1	1	1	FG
ER (DTR)		3	1	2	2	30	SD
SD (TXD)	\longrightarrow	2	2	3	3	32	RD
RD (RXD)		7	3	9	4	34	RS
DR (DSR)		8	4	6	5	36	CS
SG (SG)		-	-	-	6	-	NC
NC		5	5	7	7	29	SG
$\stackrel{\text { - }}{ }$..	-	-	-	8	-	NC
$\stackrel{\text { - }}{ }$	Shield	-	-	-	20	-	ER
$\stackrel{\text { 今 }}{ }$							

Cable Connection and Pinouts (RS485)

*1: Terminal numbers are described.
*2: As HG3G uses only RDA and RDB for RS-485(422) 2-wire method communication, connecting SDA and SDB is unnecessary.
*3: When HG2G or HG1F is used, wiring CS-, RS-, CS+, and RS+ is unnecessary. Disable the hardware flow control of the connected HG series operator interface.

Applicable Cable Connectors for HG series Operator Interface

Operator Interface	Connector on Cable
HG3G	D-sub 9-pin male connector Ferrule for screw terminal block
HG2G	Ferrule for screw terminal block
HG1F	D-sub 9-pin male connector (RS232C) Ferrule for screw terminal block (RS485)
HG2F, HG3F, HG4F	D-sub 25-pin male connector
HG2S	D-sub 37-pin female connector

Expansion RS232C/RS485 Communication Module Communication Parameter Range

Parameter	Optional Range	Default
Communication Mode	Maintenance communication	
Baud Rate (bps)	$1200,2400,4800,9600,19200,38400,57600,115200$ (Note)	9600
Data Bits	7 or 8	7
Parity	Even, Odd, None	Even
Stop Bits	1 or 2	1
Receive Timeout (ms)	10 to 2550 (10-ms increments) (Receive timeout is disabled when 0 is selected.)	
Network Number	0 to 31	500
Mode Selection Input	Any input number	0

Note: To use 57600 or 115200 bps, CPU modules with system program version 220 or higher and FC5A-SIF2 (version 200 or higher) or FC5A-SIF4 are required.

Operator Interface Communication through the Expansion RS232C/RS485 Communication Module

To perform the operator interface communication using the expansion RS232C/RS485 communication module, a user program has to be downloaded through port 1 or 2 in the 1:1 computer link system as shown on page 25-6. After downloading the user program to the CPU module, the CPU module can communicate with the operator interface through the expansion RS232C/RS485 communication module.
The operating procedures for operator interface communication are as follows:

1. Change the Function Area Settings, if required, and download the user program through communication port 1 or 2 (RS232C) on the CPU module. See step 1 through step 8 shown on pages 25-4 and 25-5.
2. Connect the operator interface to communication port 3 through port 7 on the expansion RS232C/RS485 communication module.

For terminal arrangement and wiring diagram, see page 2-89 and 2-90 (Basic Vol.).
Now the CPU module can communicate with the operator interface using communication port 3 through port 7.
Note: When the refreshing cycle of display data on the operator interface is slow, see "Communication response is slow" on page 25-13.

User Communication

The user communication function can be used for the MicroSmart to communicate with a PC, printer, and barcode reader through the expansion RS232C/RS485 communication module. For details about the user communication function, see page 10-1 (Basic Vol.).

Expansion RS232C/RS485 Communication Module Communication Parameter Range

Parameter	Optional Range	Default
Communication Mode	User communication	
Baud Rate (bps)	$1200,2400,4800,9600,19200,38400,57600,115200$ (Note)	9600
Data Bits	7 or 8	7
Parity	Even, Odd, None	Even
Stop Bits	1 or 2	1
Receive Timeout (ms)	10 to 2540 (10-ms increments) (Receive timeout is disabled when 0 or 2550 is selected.)	500

Note: To use 57600 or 115200 bps, CPU modules with system program version 220 or higher and FC5A-SIF2 (version 200 or higher) or FC5A-SIF4 are required.

User Communication through the Expansion RS232C Communication Module

This section describes an example of user communication through the expansion RS232C communication module to send data to a printer. After downloading the user program to the CPU module, the CPU module can communicate with the printer through the expansion RS232C communication module.

The operating procedures for user communication are as follows:

1. Change the Function Area Settings, if required, and download the user program through communication port 1 or 2 (RS232C) on the CPU module. See step 1 through step 8 shown on pages 25-4 and 25-5.
2. Connect the printer to communication port 3 through port 7 on the expansion RS232C communication module.

For terminal arrangement and wiring diagram, see page 2-89 (Basic Vol.).
3. From the WindLDR menu bar, select Configuration > Comm. Ports.

The Function Area Settings dialog box for Communication Ports appears.
4. In the Communication Mode pull-down list for Port 3 through Port 7, select User Protocol.

MicroSmart Function Area Settings							
Run/Stop Control Memory Backup	T1] Configure the communication ports.						
Input Configuration	Communication Ports						
Communication Poots	Port	Communication Mode		Comm. Param.	Mode Selection Input	Network No.	
Key Matrix Cartridges \& Modules Device Settings Program Protection Self Diagnostic	1	Maintenance Protocol	Configure	9600-7-Even-1		0	
	2	Maintenance Protocol	Configure	9600-7-Even-1		0	
	3	Maintenance Protocol \quad -	Configure	9600-7-Even-1		0	
	4	Maintenance Protocol User Protocol	Configure	9600-7-Even-1		0	
	5	Data Link Master	Configure	9600-7-Even-1		0	
	6	Data Link Slave Modbus RTU Master	Configure	9600-7-Even-1		0	
	7	Modbus RTU Slave	Configure	9600-7-Even-1		0	
		Modbus ASCII Master Modbus ASCII Slave					
	Communication Refresh for Port 3 through Port 7						
	\bigcirc In END Processing © Every 10 ms						

5. The Communication Parameters dialog box appears. Change settings to meet the communication parameters of the remote device. See the user's manual for the remote device.

Baud Rate (bps)	$1200,2400,4800,9600,19200,38400$, 57600,115200
Data Bits	7 or 8
Parity	Even, Odd, None
Stop Bits	1 or 2
Receive Timeout (ms)	10 to 2540 (10-ms increments) (Receive timeout is disabled when 0 or 2550 is selected.)

6. Click the OK button to save changes.

The Communication Parameters dialog box closes and the Communication page becomes active.
7. Click the $\mathbf{O K}$ button to save changes to the Function Area Settings.

The Function Area Settings dialog box closes and the ladder editing screen becomes active.
8. Download the user program through communication port 1 or 2 (RS232C) on the CPU module.

For the ladder program to control the printer, see page 25-12.

System Setup for Connecting a Printer

Cable Connection and Pinouts

FC5A-SIF2

Terminal	Pin	Description	
RS (RTS)	1	NC	No Connection
ER (DTR)	2	NC	No Connection
SD (TXD)	3	DATA	Receive Data
RD (RXD)	4	NC	No Connection
DR (DSR)	5	GND	Ground
SG (SG)	6	NC	No Connection
NC	7	NC	No Connection
$\stackrel{\text { - }}{ }$	8	BUSY	Busy Signal
$\stackrel{\text { - }}{ }$	9	NC	No Connection

The name of BUSY terminal differs depending on printers, such as DTR. The function of this terminal is to send a signal to local equipment whether the printer is ready to print data or not. Since the operation of this signal may differ depending on printers, confirm the operation before connecting the cable.

Caution

- Do not connect any wiring to the NC (no connection) pins; otherwise, the MicroSmart and the printer may not work correctly and may be damaged.

Description of Operation

The data of counter C2 and data register D30 are printed every minute. A printout example is shown on the right.

Programming Special Data Register

Special data register D8105 is used to monitor the BUSY signal and to control the transmission of print data.

Special DR	Value	Description
D8105	24	While DSR is on (not busy), the CPU sends data. While DSR is off (busy), the CPU stops data transmission. If the off duration exceeds a limit (5 sec), a transmission busy timeout error will occur, and the remaining data is not sent. The transmit status data register stores an error code. For error codes, see pages 10-11 and 10-32 (Basic Vol.).

Printout Example

--- PRINT TEST ---
11H 00M

CNT2... 0050
D030... 3854
--- PRINT TEST ---
11H 01M
CNT2... 0110
D030... 2124

The MicroSmart monitors the DSR signal to prevent the receive buffer of the printer from overflowing. The special data register number and value shown above are for port 3. For the DSR signal on other ports, see page 10-36 (Basic Vol.).

Setting Communication Parameters

Set the communication parameters to match those of the printer. See page 25-10. For details of the communication parameters of the printer, see the user's manual for the printer. An example is shown below:

Communication Parameters:	
Baud rate	9600 bps
Data bits	8
Parity	None
Stop bits	1

Note: The receive timeout value is used for the RXD instruction in the user communication mode. Since this example uses only the TXD instruction, the receive timeout value has no effect.

Ladder Diagram

The second data stored in special data register D8014 is compared with 0 using the CMP= (compare equal to) instruction. Each time the condition is met, the TXD3 instruction is executed to send the C2 and D30 data to the printer. A counting circuit for counter C2 is omitted from this sample program.

M8120 is the initialize pulse special internal relay.
$24 \rightarrow$ D8105 to enable the DSR option for busy control.
M8125 is the in-operation output special internal relay.
$\mathrm{CMP}=(\mathrm{W})$ compares the D8014 second data with 0.
When the D8014 data equals 0 second, M0 is turned on.
Counter C2 current value is moved to D31.
D8012 hour data is moved to D20.

D8013 minute data is moved to D21.

When M0 is turned on, TXD3 is executed to send 73-byte data through the RS232C port 3 to the printer.

D20 hour data is converted from BCD to ASCII, and 2 digits are sent.

D21 minute data is converted from BCD to ASCII, and 2 digits are sent.

D31 counter C2 data is converted from BCD to ASCII, and 4 digits are sent.

D30 data is converted from BCD to ASCII, and 4 digits are sent.

Troubleshooting

This section describes the procedures to determine the cause of trouble and actions to be taken when any trouble occurs while operating the expansion RS232C/RS485 communication module. When a problem occurred, check the points and take the actions described below. If the problem cannot be solved, call IDEC for assistance.

The PWR (power) LED does not go on.

Check	Action	Page
Is power supplied to the CPU module?	Supply power to the CPU module.	Basic Vol. $3-18,3-19$
Is the power voltage correct?	Supply the rated power voltage. All-in-one type: $100-240 \mathrm{~V}$ AC or 24 V DC Slim type: $\quad 24 \mathrm{~V}$ DC	Basic Vol. $3-18,3-19$

The expansion RS232C/RS485 communication module cannot communicate with WindLDR.

Check	Action	Page
Is the communication cable connected correctly?	Connect the communication cable correctly.	$\begin{aligned} & \text { Basic Vol. } \\ & 2-89,25-2 \end{aligned}$
Is the PWR LED on the CPU module on?	See "The PWR (power) LED does not go on."	25-13
Is the PWR LED on the FC5A-SIF4 module flashing?	Supply the rated voltage to the CPU module.	$\begin{gathered} \text { Basic Vol. } \\ 3-1 \end{gathered}$
Are the communication settings for WindLDR and expansion communication port the same?	Set the same communication parameters for WindLDR and expansion communication port.	25-4
Is the CPU module system program version applicable to the expansion RS232C/RS485 communication module?	Upgrade the CPU module system program version to 110 or higher to use the FC5A-SIF2 or to 220 or higher to use the FC5A-SIF4. To download or upload a user program, upgrade the system program version to 220 or higher.	$\begin{gathered} \text { Basic Vol. } \\ \text { A-9 } \end{gathered}$

The expansion RS232C/RS485 communication module cannot communicate with an operator interface.

Check	Action	Page
Is the communication cable connected correctly?	Connect the communication cable correctly.	Basic Vol. $2-89, ~ 25-6$
Is the PWR LED on the CPU module on?	See "The PWR (power) LED does not go on."	$25-13$
Is the PWR LED on the FC5A-SIF4 module flashing?	Supply the rated voltage to the CPU module.	Basic Vol.
Are the communication settings for the operator interface and expansion communication port the same?	Set the same communication parameters for the operator interface and expansion communication port.	$25-7$
Is the CPU module system program version applicable to the expansion RS232C/RS485 communication module?	Upgrade the CPU module system program version to 110 or higher to use the FC5A-SIF2 or to 220 or higher to use the FC5A-SIF4.	Basic Vol.

Communication response is slow.

Check	Action	Page
Is the communication baud rate set to a proper value?	Set the communication baud rate to a required value.	$25-3,25-7$,
$25-9$		

25: Expansion RS232C/RS485 Communication

Data is not transmitted at all in the user communication.

Check	Action	Page
Is the communication cable connected correctly?	Masic Vol. $2-89, ~ 25-11$	
Are the communication settings for the remote terminal and expansion RS232C/RS485 communication port the of correct wiring. same?	Set the same communication parameters for expan- sion communication port as the remote terminal.	$25-10$
Is the CPU module system program version applicable to the expansion RS232C/RS485 communication module?	Upgrade the CPU module system program version to 110 or higher to use the FC5A-SIF2 or to 220 or higher to use the FC5A-SIF4.	Basic Vol.
Is the correct port number designated in the TXD instruc- tion?	Designate a correct port number in the TXD instruc- tion.	Basic Vol.
Is the start input for the TXD instruction on?	Turn on the start input for the TXD instruction.	$10-7$
Is the PWR LED on the CPU module on?	See "The PWR (power) LED does not go on."	$25-12$
Is the PWR LED on the FC5A-SIF4 module flashing?	Supply the rated voltage to the CPU module.	$25-13$

Data is not transmitted correctly in the user communication.

Check	Action	Page
Are the communication settings for the external device and expansion communication port the same?	Set the same communication parameters for expan- sion communication port as the external device.	$25-10$
Is the same data register designated as destination device D2 (transmit status) repeatedly?	Change the duplicate device to another data regis- ter.	Basic Vol. $10-6$
Are inputs to more than 5 TXD instructions on simultane- ously?	Correct the program to make sure that inputs to more than 5 TXD instructions do not go on simulta- neously.	Basic Vol. $10-6$
Is duration of the busy signal at the remote terminal less than 5 sec?	Make sure that the busy signal at the remote termi- nal does not exceed 5 sec.	Basic Vol. $10-38$
Did you make sure of source 1 device of the TXD instruc- tion?	Make sure that the transmit data designated as source 1 device is correct.	Basic Vol. $10-7$
Is the PWR LED on the FC5A-SIF4 module flashing?	Supply the rated voltage to the CPU module.	Basic Vol. $3-1$

Data is not received at all in the user communication.

Check	Action	Page
Is the communication cable connected correctly?	Make sure of correct wiring.	$\begin{gathered} \text { Basic Vol. } \\ 2-89,25-11 \end{gathered}$
Are the communication settings for the remote terminal and expansion RS232C/RS485 communication port the same?	Set the same communication parameters for expansion RS232C communication port as the remote terminal.	25-10
Is the CPU module system program version applicable to the expansion RS232C/RS485 communication module?	Upgrade the CPU module system program version to 110 or higher to use the FC5A-SIF2 or to 220 or higher to use the FC5A-SIF4.	Basic Vol. A-9
Is the correct port number designated in the RXD instruction?	Designate a correct port number in the RXD instruction.	Basic Vol. 10-6
Is the start input for the RXD instruction on?	Turn on the start input for the RXD instruction.	$\begin{gathered} \text { Basic Vol. } \\ 10-39 \end{gathered}$
Is the PWR LED on the CPU module on?	See "The PWR (power) LED does not go on."	25-13
Is the PWR LED on the FC5A-SIF4 module flashing?	Supply the rated voltage to the CPU module.	Basic Vol. 3-1

Data is not received correctly in the user communication.

Check	Action	Page
Are the communication settings for the external device and expansion communication port the same?	Set the same communication parameters for expan- sion communication port as the external device.	$25-10$
Is the same data register designated as destination device D2 (receive status) repeatedly?	Change the duplicate device to another data regis- ter.	Basic Vol.
Is a start delimiter specified in the RXD instruction? Are inputs to more than 5 RXD instructions on simultane- ously?	Correct the program to make sure that inputs to more than 5 RXD instructions do not go on simulta- neously.	Basic Vol.
Did you check the format of incoming data?	Make sure that the receive format of the RXD instruction matches that of the incoming data.	Basic Vol.
Is the receive timeout value set correctly using WindLDR?	Make sure that the receive timeout value is larger than character intervals of the incoming data.	Basic Vol.
Did you make sure of source 1 device of the RXD instruc- tion?	Make sure that the receive data designated as the source 1 1 device is correct.	Basic Vol.
Is the PWR LED on the FC5A-SIF4 module flashing?	Supply the rated voltage to the CPU module.	$10-16$

If the communication is still unstable after going through the trouble shooting described above, check and adjust the following points and confirm if the communication stability can be improved.

- Use slower communication speed.
- Increase the transmission wait time.
- Increase the retry count.
- Increase the timeout setting.
- Add COMRF instructions in the ladder program.
- Select "Every 10 ms" under "Communication Refresh for Port 3 through port 7" in Function Area Settings.

INDEX

\#	1:N computer link 21-1	DEG 17-2
	100-ms	DGRD 10-3
	dual timer 15-1	DI 11-7
	10-ms	DISP 10-1
	dual timer 15-1	DIV 5-1
	1-ms dual timer 15-1	DJNZ 11-5
	1-sec	DTCB 8-22
	dual timer 15-1	DTDV 8-21
		DTIM 15-1
A	A/B slaves 24-4	DTM -15-1
	AC	DTML 15-1
	adapter 21-5	DTMS 15-1
	ACOS 17-7	El 11-7
	active slaves (LAS) 24-26	ENCO 8-15
	adapter	EXP 18-3
	AC 21-5	FIEX 19-3
	RS485 communication 21-1	FIFOF 19-1
	ADD 5-1	FOEX 19-3
	addition 5-1	FRQRF 11-12
	address	HOUR 20-11
	LEDs 24-16	HSCRF 11-11
	and I/O LEDs 24-17	HTOA 8-5
	addressing tool 24-4	HTOB 8-1
	adjusting	HTOS 20-9
	clock	IBMV 3-10
	cartridge accuracy 9-8	IBMVN 3-12
	using a user program 9-7	ICMP> $=4-6$
	scan time 10-4	IMOV 3-6
	advanced instruction 2-1	IMOVN 3-8
	ACOS 17-7	INC 5-13
	ADD 5-1	input condition
	ALT 8-18	IOREF 11-9
	ANDW 6-1	LABEL 11-1
	applicable CPU modules 2-4	LC $<4-8$
	ASIN 17-6	LC< $=4.8$
	ATAN 17-8	LC<> 4-8
	ATOB 8-12	LC= 4-8
	ATOH 8-7	LC> 4-8
	AVRG 12-7	LC>= $4-8$
	BCDLS 7-5	LCAL 11-3
	BCNT 8-17	list 2-1
	BMOV 3-9	LMP 11-1
	BTOA 8-9	LOG10 18-2
	BTOH 8-3	LOGE 18-1
	CMP> 4-1	LRET 11-3
	CMP<= 4-1	MOV 3-1
	CMP<> 4-1	MOVN 3-5
	CMP $=4-1$	MUL 5-1
	CMP> 4-1	NDSRC 19-5
	CMP>= 4-2	NOP $\quad 2-10$
	COMRF 11-13	NRS 3-14
	COS 17-4	NSET 3-13
	CVDT 8-19	ORW 6-1
	CVXTY 12-2	PID 14-1
	CVYTX 12-3	POW 18-4
	data types 2-8	PULS1 13-2
	DEC 5-13	PULS2 13-2
	DECO 8-16	PULS3 13-2


```
    or borrow signals 5-2
CDI 24-27
changing
    ID1 code of slave 0 24-29
clock
    adjusting using a user program 9-7
    cartridge
        adjusting accuracy 9-8
        backup duration 9-8
        enable adjustment 9-8
    instructions 20-1
CMP< 4-1
CMP<= 4-1
CMP<> 4-1
CMP= 4-1
CMP> 4-1
CMP>= 4-2
common logarithm 18-2
communication
    block mounting position 24-40
    parameters 21-2, 22-10, 25-4, 25-10, 25-12
    port
        number 25-1
    refresh 11-13
    settings 21-3, 23-4
compare
    equal to 4-1
    greater than 4-1
        or equal to 4-2
    less than 4-1
        or equal to 4-1
    unequal to 4-1
comparison
    result
        M8150, M8151, M8152 4-2, 4-6
computer link
    cable 4C 24-6, 25-2, 25-6
    communication 21-1, 25-2
COMRF 11-13
    execution time 11-13
Config_OK 24-24
Configuration 24-25
configuration 24-36
    data image (CDI) 24-27
    mode 24-15
configure AS-Interface master 24-34
configuring a slave 24-10
Connected Mode 24-25
connected mode 24-15
connector pinout 22-1
control
    register 13-2, 13-9, 13-15, 13-27, 14-3
    relay 14-14
conversion 10-1, 10-3
    linear 12-5
convert
    data type 8-19
    X to Y 12-2
    Y to X 12-3
coordinate conversion instructions 12-1
COS 17-4
cosine 17-4
```

CVDT 8-19
CVXTY 12-2
CVYTX 12-3
cycle time 24-5
D
data
combine 8-22
comparison instructions 4-1
conversion
error 12-3, 12-4
instructions 8-1
divide 8-21
phase 10-1
swap 8-23
type 2-7
types for advanced instructions 2-8
data register
double-word
data move 3-2
devices 2-10
Data_Exchange_Active 24-25
DEC 5-13
deceleration input 13-28
decimal values and hexadecimal storage 2-8
DECO 8-16
decode 8-16
decrement 5-13
jump non-zero 11-5
DEG 17-2
degree 17-2
destination device 2-7
detected slaves (LDS) 24-26
device
areas discontinuity 2-10
AS-Interface 24-18
DGRD 10-3
DI 11-7
dialing 22-2
telephone number 22-4
digital
I/O data allocation 24-39, 24-40
input data image 24-20
output data image 24-21
read 10-3
switch data reading time $\quad 10-3$
dimensions 21-5
direct
control action 14-14
disable
interrupt 11-7
disconnect
line 22-2
mode 22-2, 22-5
discontinuity of device areas 2-10
DISP 10-1
display 10-1
processing time 10-1
DIV 5-1
division 5-1
DJNZ 11-5
double-word
data move in data registers 3-2
devices in data registers 2-10


```
LC<> 4-8
LC= 4-8
LC> 4-8
LC>= 4-8
LCAL 11-3
LDS 24-26
LDS.0 24-24
LED indicators 24-14, 24-16
line
    connection 22-2
linear conversion 12-5
list
    advanced instruction 2-1
    basic instruction 1-1
    of active slaves (LAS) 24-26
    of detected slaves (LDS) 24-26
    of peripheral fault slaves (LPF) 24-26
    of projected slaves (LPS) 24-27
    upgraded and new functions 1-2
LJMP 11-1
load compare
    equal to 4-8
    greater than 4-8
        or equal to 4-8
    less than 4-8
        or equal to 4-8
    unequal to 4-8
local mode 24-15
LOG10 18-2
logarithm/power instructions 18-1
LOGE 18-1
long press 24-14
LPF 24-26
LPS 24-27
LRET 11-3
```

M maintenance
protocol 21-2, 25-4
manipulated variable 14-16
maximum
AS-Interface bus cycle time 24-5
Modbus TCP
communication 23-1
format 23-9
master communication 23-2
request table 23-3
slave communication 23-5
mode 9-1
modem
cable 1C 22-1
mode 22-1
status 22-3
status data register 22-7
protocol 22-10
module
RS485 communication 21-1
monitor
AS-Interface slave 24-37
monitoring
digital I/O and changing output status 24-12
PLC status 21-3
mounting
hole layout
RS232C/RS485 converter 21-5
position communication block 24-40
MOV 3-1
move 3-1
instructions 3-1
not 3-5
MOVN 3-5
MUL 5-1
multiplication 5-1
$\mathbf{N} \quad \mathrm{N}$ data
repeat set 3-14
search 19-5
set 3-13
natural logarithm 18-1
NDSRC 19-5
network number 21-3
no operation 2-10
NOP 2-10
normal
protected
data exchange off 24-15
mode 24-15
offline 24-15
Normal_Operation_Active 24-25
NRS 3-14
NSET 3-13
0 ODI 24-21
Off-line 24-25
Offline_Ready 24-25
online
mode protocol selection 22-3
opcode 2-7
operating
procedure
modem mode 22-11
operation
basics 24-6
mode 24-15
operational state 22-2
operator interface communication 25-6
OR word 6-1
originate mode 22-2, 22-3
ORW 6-1
output
data 24-39, 24-40
LEDs 24-16
points 10-1, 10-3
overlapping coordinates 12-6
$\boldsymbol{P} \quad$ parameter 24-4
image (PI) 24-28
PCD 24-28
peripheral fault slaves (LPF) 24-26
Periphery_OK 24-25
permanent
configuration data (PCD) 24-28
parameter (PP) 24-29
PI 24-28
PID
control 14-1
instruction 14-1
notes for using 14-17
pinout 22-1
RS232C connector 21-5
PLC status
monitoring 21-3
POW 18-4
power 18-4
supply 24-7
AS-Interface 24-3
wiring 24-7
PP 24-29
preparations for using modem 22-9
printer 25-11
process variable before conversion 14-16
processing time 24-18, 24-30
profile 24-27
analog slave 24-22
program branching
instructions 11-1
using with SOTU/SOTD instructions 11-2
using with timer instruction 11-2
programming
clock cartridge accuracy using WindLDR 9-8
computer link using WindLDR 21-2
data registers and internal relays 22-9
DI or El using WindLDR 11-7
Modbus TCP
master using WindLDR 23-3
slave using WindLDR 23-7
modem mode using WindLDR 22-10
special data register 25-11
projected slaves (LPS) 24-27
protected mode 24-15
PULS1 13-2
PULS2 13-2
PULS3 13-2
pulse
instructions 13-1
output 13-2
width modulation 13-8
pushbutton operation 24-14
pushbuttons and LED indicators 24-14
PWM1 13-8
PWM2 $13-8$
PWM3 $13-8$
quantities of slaves and I/O points 24-5
\boldsymbol{R} RAD 17-1
radian 17-1
ramp control 13-14
RAMP1 13-14
RAMP2 13-14
random 5-19
reading
time digital switch data 10-3
receive
slave data 24-39, 24-40
timeout 21-2, 25-3, 25-4, 25-7, 25-9, 25-10
repeat
cycles 2-7
designation 2-7
operation
ADD and SUB instructions 5-6
ANDW, ORW, and XORW instructions 6-3
data comparison instructions 4-4
DIV instruction 5-10
indirect bit move instruction 3-11
move instructions 3-3
MUL instruction 5-8
request
and result codes 24-31
table 23-4
resetting
modem 22-4, 22-6
retry
cycles 22-3
interval 22-3
reverse
control action 14-14
revision history 1-3
RNDM 5-19
ROOT 5-15
rotate
left 7-8
right 7-10
ROTL 7-8
ROTR 7-10
RS232C
cable 21-1,21-5
communication
adapter 22-1
expansion communication 25-1
port
communication protocol 22-5
RS232C/RS485 converter 21-1, 21-4
RS485
communication
adapter 21-1
module 21-1
expansion communication 25-1
run access
read 16-2
write 16-3
RUNA READ 16-2
RUNA WRITE 16-3
S sample program
change slave PI 24-31
modem answer mode 22-13
modem originate mode 22-12
scan time
adjusting 10-4
sec to HMS 20-10
selecting the PLC type 24-8
send slave data 24-39, 24-40
serial interface
specifications 21-4
set point 14-16
setting
calendar/clock
using a user program 9-6
using WindLDR 9-6
SFTL 7-1
SFTR 7-3
shift
left 7-1
right 7-3
shift/rotate instructions 7-1
short press 24-14
SIN 17-3
sine 17-3
slave
addresses 24-4
expansion capability 24-4
identification 24-4
information 24-27
list information 24-26
profile 24-27
analog 24-22
receive data 24-39, 24-40
send data 24-39, 24-40
SOTU/SOTD instructions using with program
branching 11-2
source
and destination devices 2-7
device 2-7
special data register
for calendar/clock data 9-6
for modem mode 22-3
for pulse outputs 13-5, 13-19
special internal relay
for calendar/clock data 9-7
for interrupt status 11-7
for modem mode 22-2
specifications
Modbus TCP
master communication 23-2
slave communication 23-6
RS232C/RS485 converter 21-4
serial interface 21-4
standard slaves 24-4
start
and result internal relays 22-2
status
code
intelligent module access 16-6
data register modem mode 22-7
information 24-24
internal relays 24-24
internal relays 22-2
LEDs 24-16, 24-17
relay $13-4,13-10,13-19,13-29$
step response method 14-12
STOH 20-10
stop

access

read 16-4
write 16-5
STPA READ 16-4
STPA WRITE 16-5
structure of an advanced instruction 2-7
SUB 5-1
subroutine 11-4
subtraction 5-1
SUM 5-16
sum 5-16

SWAP 8-23
SwitchNet
data I/O port 24-39
slaves internal relays 24-41
system
requirements 24-2
setup 24-6
modem mode 22-1
\boldsymbol{T} TADD 20-1
TAN 17-5
tangent 17-5
TCCST 3-16
teaching timer 15-3
telephone number 22-3, 22-4
time
addition 20-1
subtraction 20-5
timer
instruction using with program branching 11-2
or counter
$\begin{array}{ll}\text { as destination device } & 2-7\end{array}$
as source device 2-7
timer/counter
current value
store 3-16
timing chart
disable pulse counting 13-6, 13-12
enable pulse counting 13-5, 13-11
reversible control
disabled 13-20
with dual pulse output 13-22
with single pulse output 13-21
zero-return operation 13-30
topology 24-5
transition of AS-Interface master module modes 24-14
trigonometric function instructions 17-1
troubles at system start-up 24-13
troubleshooting 25-13
modem communication 22-14
TSUB 20-5
TTIM 15-3
\boldsymbol{U} user
communication 25-9
program
adjusting clock 9-7
setting calendar/clock 9-6
protocol 25-10
using WindLDR 24-34
V very low safety voltage 24-3, 24-7
VLSV 24-3, 24-7
\boldsymbol{W} week
programmer instructions 9-1
table 9-2
timer 9-1
WindLDR
programming
clock cartridge accuracy 9-8
computer link 21-2
DI or El 11-7

Index

Modbus TCP
master 23-3
slave 23-7
modem mode 22-10
setting calendar/clock 9-6
WKTBL 9-2
WKTIM 9-1
word shift 7-7
WSFT 7-7
$\boldsymbol{X} \quad$ XCHG $\quad 3-15$
XORW 6-1
XY format set 12-1
XYFS 12-1
Z zero return 13-26
ZRN1 13-26
ZRN2 13-26
ZRN3 13-26

Note

UNITED STATES

IDEC CORPORATION
1175 Elko Drive, Sunnyvale, CA 94089-2209, USA
Tel: +1-408-747-0550
Toll Free: (800) 262-IDEC
Fax: +1-408-744-9055
Toll Free Fax: (800) 635-6246
E-mail: opencontact@idec.com

CANADA

IDEC CANADA LIMITED
3155 Pepper Mill Court, Unit 4,
Mississauga, Ontario, L5L 4X7, Canada
Tel: +1-905-890-8561
Toll Free: (888) 317-4332
Fax: +1-905-890-8562
E-mail: sales@ca.idec.com

AUSTRALIA

IDEC AUSTRALIA PTY. LTD.
17/104 Ferntree Gully Road, Oakleigh, Victoria 3166, Australia
Tel: +61-3-8523-5900
Toll Free: 1800-68-4332
Fax: +61-3-8523-5999
E-mail: sales@au.idec.com

UNITED KINGDOM

IDEC ELECTRONICS LIMITED
Unit 2, Beechwood, Chineham Business Park,
Basingstoke, Hampshire RG24 8WA, UK
Tel: +44-1256-321000
Fax: +44-1256-327755
E-mail: sales@uk.idec.com

GERMANY

IDEC ELEKTROTECHNIK GmbH
Wendenstrasse 331, 20537 Hamburg, Germany
Tel: +49-40-25 30 54-0
Fax: +49-40-25 30 54-24
E-mail: service@idec.de

JAPAN

IDEC CORPORATION
7-31, Nishi-Miyahara 1-Chome, Yodogawa-ku, Osaka 532-8550, Japan
Tel: +81-6-6398-2571
Fax: +81-6-6392-9731
E-mail: marketing@idec.co.jp

CHINA

IDEC (SHANGHAI) CORPORATION
Room 608-609, 6F, Gangtai Plaza, No. 700,
Yan'an East Road, Shanghai 200001, PRC
Tel: +86-21-5353-1000
Fax: +86-21-5353-1263
E-mail: idec@cn.idec.com
IDEC (BEIJING) CORPORATION
Room 211B, Tower B, The Grand Pacific Building, 8A Guanghua Road, Chaoyang District, Beijing 100026, PRC
TEL: +86-10-6581-6131
FAX: +86-10-6581-5119
IDEC (SHENZHEN) CORPORATION
Unit AB-3B2, Tian Xiang Building, Tian'an Cyber Park, Fu Tian District, Shenzhen, Guang Dong 518040, PRC
Tel: +86-755-8356-2977
Fax: +86-755-8356-2944

HONG KONG

IDEC IZUMI (H.K.) CO., LTD.
Units 11-15, Level 27/F, Tower 1, Millennium City 1, 388 Kwun Tong Road, Kwun Tong, Kowloon, Hong Kong Tel: +852-2803-8989
Fax: +852-2565-0171
E-mail: info@hk.idec.com

TAIWAN

IDEC TAIWAN CORPORATION
8F-1, No. 79, Hsin Tai Wu Road, Sec. 1, Hsi-Chih, NewTaipei County, Taiwan
Tel: +886-2-2698-3929
Fax: +886-2-2698-3931
E-mail: service@tw.idec.com

SINGAPORE

IDEC IZUMI ASIA PTE. LTD.
No. 31, Tannery Lane \#05-01
HB Centre 2, Singapore 347788
Tel: +65-6746-1155
Fax: +65-6844-5995
E-mail: info@sg.idec.com

[^0]: Note: Since the destination uses two word devices in the multiplication operation, data register D1999 cannot be used as destination device D1. When using a bit device such as internal relay for destination, 32 internal relays are required; so internal relay M2521 or a larger number cannot be used as destination device D1.

[^1]: When a bit device such as I (input), Q (output), M (internal relay), or R (shift register) is designated as the source or destination, 16 points (word data type) are used.

 When a word device such as T (timer), C (counter), or D (data register) is designated as the source or destination, 1 point (word data type) is used.

[^2]: * Device Address represents the offset from the Device Address designated in the RUNA or STPA instruction dialog box.

[^3]: * Device Address represents the offset from the Device Address designated in the RUNA or STPA instruction dialog box.

